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Abstract 

Significant contributors to the broad application of transcranial direct current stimulation 

(tDCS) are portability, ease-of-use, and tolerability; with adverse events limited to transient and 

mild cutaneous sensations (e.g. perception of burning, itching, and tingling) and erythema. 

However, the fundamental questions remain about the mechanism of transdermal current flow 

during transcranial electrical stimulation, including tDCS. Example of previously unexplained 

questions in tDCS include: 1) the relationship between tDCS-induced skin reddening (erythema) 

profile and local current density profile predicted by the model; 2) the source of burning sensation 

during tDCS and whether it is related to an actual skin heating; 3) the role of skin multi-layers and 

ultrastructures (blood vessels, sweat glands, and hair follicles) in current flow. The finite element 

modeling (FEM) of current flow using simplified tissue geometries predict higher current density 

at the electrode edge, but the experimental evidences for the cutaneous effects of tDCS (skin 

heating or skin reddening) are unclear. Prior skin models of cutaneous current flow lacked 

anatomical details that will a priori be expected to govern current flow patterns. 

In this dissertation we address the aforementioned questions by: first quantifying tDCS-

induced skin erythema profile alongside FEM predicting local current density profile; then assess 

the extent of skin heating during tDCS, including the role of joule heating, and relate temperature 

increase (if any) to burning sensation; and finally develop a realistic skin model to address the role 

of complex skin tissue layers and ultrastructures in current flow. In the first study, we conclude 

that the tDCS-induced skin reddening profile is diffuse, higher in active stimulation than sham 

stimulation, and does not occur at the electrode edges suggesting two alternate hypothesis: 1) skin 

reddening profile is not related to local current density; and 2) skin current density is relatively 

uniform, so prior FEM models are incorrect. Next, we conduct phantom measurement suggesting 
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no significant temperature increase due to joule heat as expected at the skin during tDCS. The in 

vitro human skin temperature measurement suggests that independent of tDCS polarity, 

temperature increases by about 1oC; an increase during tDCS that is less than the cooling produced 

following a room-temperature sponge application during the set-up. We conclude that any 

incremental temperature increase by tDCS may reflect vascular flare response due to current flow, 

cannot exceed the core body temperature, and is more than the offset by  sponge-material coolness, 

thus, the sensation of skin “burning” during tDCS is not related to an actual increase in 

temperature. In the final study, we develop a detailed multi-layer skin model including sweat 

glands, hair follicles, and vasculature, and assess the role of multi-layers and ultrastructures in 

current flow. The FEM analysis predict that sweat glands eliminates localized current density 

around the electrode edges, and blood vessels uniformly distribution current across the modeled 

vasculature under the electrode. We expect that a current flow and bioheat model of such a detailed 

skin would increase the uniformity of current density and temperature predicted at the skin - 

consistent with the experimental measurement of skin reddening and skin heating. 
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Chapter 1: Introduction and Overview 

1.1 Transcranial direct current stimulation 

Transcranial Direct Current Stimulation (tDCS) is investigated for treating a range of 

neuropsychiatric disorders, rehabilitation, and altering cognitive performance (Bikson et al., 2016; 

Brunoni et al., 2012; Nitsche et al., 2008). Significant contributors to the broad adaptation of tDCS 

are the portability and ease-of-use along with the tolerability profile of tDCS - adverse events 

limited to transient cutaneous sensations (e.g. perception of warmth, itching, and tingling) and 

erythema (Dundas et al., 2007a; Fertonani et al., 2015). However, fundamental questions remain 

about the mechanisms of transdermal current passage during tDCS.  

 

Figure 1: Computational FEM head model and predicted electric field using a dual-hemisphere tDCS 

montage. (A1) 3D image of a segmented brain generated from an MRI scan of a healthy adult and different 

views (F, L, R) of electrode placement over the inferior frontal gyrus. (A2) represent an orientation of 

magnitude controlled electric field streamlines inside the head tissue layers during tES. (A3) Volume plot 

of predicted field intensity and different views of brain under stimulation conditions. Predicted results 

plotted at same color range (Peak= 0.3 V/m) indicated comparable field intensity under both anode and 

cathode. 
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Previous studies have not well documented whether localized current density causes skin 

reddening. Although adverse events of tDCS are mild and transients, the source of burning 

sensation during tDCS is still unknow. Prior models have predicted no harmful skin temperature 

increase during tDCS but experimentally the extent of temperature rise during 20 min 2 mA tDCS 

is not quantified. tDCS-induced skin heating (if any) can answer whether the burning sensation is 

thermal in nature. Past studies have outlined the influence of electrical properties of skin in the 

performance and controllability of stimulation (Luna et al., 2015) suggesting a better 

understanding of the influence of skin anatomy, electrical properties of its structure, and an ability 

to predict skin current flow pattern under controlled stimulation are imperative for better clinical 

outcomes.  

The common modality of transcranial electrical stimulation is to modulate brain functions 

by applying electrical stimulus (treatment specific range of current or voltage) across pairs of 

electrodes (sponges, gel, or adhesive pads) placed on the skin surface (Bohm, 1978). Central to 

the application of tES is the stimulation parameters such as intensity, duration, waveform, and 

electrode montage which shape the amount of current that can be safely delivered through skin to 

a desired target. For the case of tDCS, the waveform is direct current.  

Regardless of the level of target (central or peripheral nervous system), current must flow 

through the skin. Transient cutaneous sensation (tingling, itchiness) and erythema (stimulation 

induced skin redness) normally occurs at the skin level, which are considered the main adverse 

events of tDCS (Minhas et al., 2011), except paresthesia (transcutaneous electrical nerve 

stimulation (tENS)) (Tonezzer et al., 2017). Thus, it is imperative to quantify whether erythema 

profile and skin heating are related to local current density, investigate whether tDCS produces 
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skin heating and if any skin heating is due to joule heat, and analyze the role of skin-ultrastructures 

such as sweat glands, hair follicles, and blood vessels in skin current flow. 

1.2 Common adverse events of tDCS 

Transient cutaneous sensation (e.g., itching, tingling, warmth) and skin erythema (so called 

“flare”) are the primary reported adverse events of tDCS (Nitsche et al., 2008). tDCS-induced skin 

reddening is observed immediately under the site of stimulation after tDCS. Prior studies reported 

that it is observed more in active conditions than sham. Only in cases using nonoptimal materials 

and procedures can more severe or lasting skin irritation be observed (Bikson et al., 2009; Poreisz 

et al., 2007). Across trials, there are variations in the intensity and duration of reported adverse 

events (Brunoni et al., 2011; Dobbs et al., 2018; Matsumoto and Ugawa, 2017). These adverse 

skin responses can be readily minimized by following established protocols in dose and electrode 

preparation (Brunoni et al., 2012; Woods et al., 2016), monitoring electrode resistance (Khadka et 

al., 2015a; Merrill et al., 2005), and using proven electrode designs (Brunoni et al., 2011; Woods 

et al., 2016) or more advanced electrode techniques (Kempe et al., 2014; Khadka et al., 2015b). 

 

Figure 2: Adverse events reported during tDCS using a VAS rating scale (1-10; 0: absent, 1=severe). 
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Since sensations also determine effective blinding, tDCS electrodes are critical for blinding 

reliability. To the extent tDCS electrodes design shapes current flow through the skin, proper 

electrode selection and monitoring are critical for the reproducibility of efficacy. Monitoring of 

electrode resistance before and during tDCS is considered important for tolerability (DaSilva et 

al., 2011; Khadka et al., 2015a) where an unusually high electrode resistance is indicative of 

undesired electrochemical changes and/or poor skin contact conditions. However, monitoring of 

electrode impedance in no way reduces the need and importance of proper electrode selection and 

set-up- in the sense that poor electrodes conditions may be associated with a low resistance and, 

conversely, in some cases (e.g. subjects with high resistance scalp) good contact may be associated 

with a moderately high resistance. Skin irritation and discomfort may be associated with high 

resistance, but not necessarily. Thus, monitoring of resistance is an adjunct tool to detect not only 

ideal conditions at the electrode skin interface, but also a substitute for quality electrode design 

and strict protocol adherence (Khadka et al., 2015a; Woods et al., 2016).  

As noted, direct contact between the metal or conductive rubber electrode (site for 

electrochemical reaction) and the skin can trigger skin irritation (Merrill et al., 2005). Hence, 

sufficient electrolytic gel, cream or saline should be used as a buffer in between. The shape or size 

of tES electrodes also significantly alter the distribution of current delivered to the brain (Kronberg 

and Bikson, 2012; Minhas et al., 2011). Variation in the electrode assemblies or particularly 

electrode size, results in differences in the distribution of the current across the surface area of the 

scalp and to the brain (Kronberg and Bikson, 2012; Minhas et al., 2011). Thus, it is critical for 

investigators to consistently report not only the current intensity applied and the amount of contact 

medium used but also the shape and size of the electrode assembly. 
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1.3 Unexplained Questions in tDCS 

It is still unclear whether the source of tDCS-induced skin redness (erythema) is related to 

local current density or some other processes activated by current flow. The skin reddening is 

inevitable after tDCS and the spatial profile has not been explicitly studied before (Guarienti et al., 

2015; O’Connell et al., 2012).  Experimentally, it is currently not possible to measure current 

density with precision in an intact skin to validate the pattern of current density. Prior models 

predicted higher current density at the electrode edges (Minhas et al., 2011; Miranda et al., 2006). 

If local skin reddening is directly related to local current density then there should be a correlation 

between them: essentially, one would expect localized skin reddening around the perimeter of 

electrode. But the prior models are not validated, and the prediction cannot be conclusive. Burning 

sensation is one of the commonly reported adverse events in tDCS, but the source of burning 

sensation remains unaddressed. It is still unclear whether the skin is actually heating during tDCS 

or rather if the stimulation is activating heat-sensitive nerve fibers thus creating the burning 

sensation.  

It is not well established whether current always concentrates around the edges or skin 

ultra-structures (hair follicles, sweat glands, and blood vessels). Prior modeling studies have not 

modeled skin accurately and all of the prior skin models predict higher current density around the 

electrode edges. How predicted current flow pattern changes with adding details such as multiple 

skin layers and/or ultra-structure has not be adequately addressed.  

Another important question is whether tDCS strictly require an electrolyte soaked-sponge 

electrode or fluid-hydrogel, or there is a “dry” alternative for this. Finally, there is a growing 

interest of implementing higher current in clinical trials of tDCS. The major question is whether 
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we can safely increase the stimulation intensity up to 4 mA. These are some unexplained questions 

which underpinned the research approach and aims of this thesis. 

1.4 Hypothesis and Aims  

Aim 1: Characterize whether the profile of tDCS-induced skin reddening (erythema) 

profile matches predicted current density by the FEM model. The main hypothesis is that tDCS-

induced skin reddening profile matches the current density profile as predicted by the FEM model, 

and the sub-hypothesis is that there is a difference in skin reddening between active and sham. 

Skin reddening (erythema) is important because it is one of the most evident side-effects in DCS 

trials. Redness resolve spontaneously after stimulation and is not inherently injurious; so, in the 

context of clinical acceptability, skin reddening is not a serious concern. None the less, it is the 

most obvious outcome of tDCS and may be linked to and inform skin current flow optimization. 

The sources of tDCS-induced erythema include but is not limited to stimulation current, 

electrochemical reaction, pressure by headgear, vascular flare response, or joule heat (O’Connell 

et al., 2012). Electrode design and thickness, gender, skin type, nature of stimulation (anodal or 

cathodal), and intensity of stimulation have been suggest to mediate the degree of erythema 

(Dundas et al., 2007b; Guarienti et al., 2014; Guleyupoglu et al., 2014).  

An overarching question related to the source of skin redness is its relationship with local 

skin current density. Prior current flow models predict peak current density at the electrode edges 

(Gomez-Tames et al., 2016; Kronberg and Bikson, 2012; Minhas et al., 2011; Miranda et al., 2006; 

Opitz et al., 2015; Saturnino et al., 2015). In controlled tDCS trials, skin reddening might directly 

affect subject or operators blinded to active vs sham, if skin reddening depends on current flow. 

There is a lack of quantitative assessment of the skin reddening profile during or after tDCS. 

Existing skin reddening assessments is typically based on visual observation, using either a 
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questionnaire (presence of redness: yes; absence of redness: no) or, rarely, Draize erythema rating 

scale (Guarienti et al., 2015). For example, Guarienti et al., 2015 applied an anti-inflammatory 

paste (2 % ketoprofen) to minimize skin reddening related to any inflammatory reaction at the 

surface of skin during tDCS. In this dissertation, we quantitatively analyzed erythema under the 

site of stimulation by estimating the probability heatmap of erythema distribution and a ROI-based 

assessment of relative erythema spatial profile. This approach also revisits suggestions from prior 

studies (Guarienti et al., 2015; O’Connell et al., 2012; Palm et al., 2013) that significant skin 

redness is observed during sham stimulation, possibly induced by 1) a brief period of active 

stimulation at the session onset; 2) pressure of the sponge pad, depending on how it is fixed; and 

3) irritation of the skin due to the sponge or saline solution. 

 
Aim 2: Assess whether there is any significant skin heating during tDCS and if joule 

heating contributes to any skin heating. The main hypothesis is that tDCS produces skin heating, 

and the sub-hypothesis is that tDCS produces skin heating due to joule heat. Burning sensation is 

a common adverse events and skin heating during tDCS is speculated as the main cause for this 

sensation. In addition, prior works have suggested that even small changes in the skin temperature 

during tDCS might influence current flow patterns to the brain. (Gholami-Boroujeny et al., 2015). 

However, there is a lack of systematic studies on the exact mechanism (source) of burning 

sensation during tDCS. It is unclear whether burning sensation is related to actual skin heating, 

any temperature increase during tDCS is polarity specific, contributed by passive heating, or 

vascular flare response, remains to be studied. Skin temperature may confound blinding and 

decrease the validity of tDCS trials. If the sensation of warmth is based on real temperature change 

then it could confound both subject and operator blinding. Nitsche and Paulus, 2000 measured skin 

temperature during a relatively brief 5 min stimulation and reported no change in skin temperature 
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during and after. However, tDCS is typically applied for 20 min or more, and the extent of 

temperature increase during this stimulation period was not addressed before. Some prior 

computational modeling studies with homogenous skin model or two-layer skin model predicted 

negligible temperature increase at the skin (A. Datta et al., 2009; Gomez-Tames et al., 2016). In 

this dissertation, we address whether there is any skin heating during tDCS and if any skin heating 

is due to joule heat. We first conducted phantom study to isolate joule heat generated during tDCS. 

The phantom was a homogeneous volume which mimics how the skin is typically modeled. It is 

not feasible to build a skin phantom that reproduces skin multi-layers (note the thickness of 

epidermis (0.1 mm)) and ultra-structures (hair follicles, sweat glands, and blood vessels). Next, we 

conducted human experiment to investigate if the skin surface warms during tDCS. Since the prior 

homogenous skin model predicted negligible temperature increase, we modeled the phantom to 

verify that prior simplistic skin models would not reliability predict temperature increase due to 

joule heat. We then developed a multi-layer skin model (epidermis, dermis, and fat) incorporating 

blood perfusion and metabolism to predict any temperature increase during tDCS due to joule heat. 

Aim 3: Develop a high-resolution skin model incorporating skin-ultrastructures such as 

sweat glands, hair follicles, blood vessels, and complex tissue layers to describe their role in skin 

reddening and skin heating. This is a technical aim. We first used the multi-layer skin model 

adapted from Aim 2 and predicted the current flow pattern. Since the predicted current flow pattern 

was not uniform (current concentration was higher around the epidermis and dermis), we added 

moderately-realistic (e.g. geometric) ultra-structures sequentially to address their role in current 

flow pattern. Finally, based on the prediction from the multi-layer skin model with moderately-

realistic ultra-structures, we developed the first high-resolution anatomically realistic and detailed 
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skin model considering complex mosaic skin layer, skin-ultrastructure (hair follicles, sweat glands, 

and complex vasculature network), and experimentally measured skin electrical properties.  

1.5 Outline of Chapters 

Chapter 2 describes tDCS-induced skin reddening profile and confirms whether this profile 

matches with the current density profile predicted by the FEM model (Aim 1). In this study, we 

developed an image-based skin reddening (erythema) approach to generate a probability heatmap 

of erythema (skin reddening) distribution at the skin surface for active and sham conditions and 

quantified the erythema spatial profile.  

Chapter 3 tests whether there is any skin heating during tDCS and if any heating is related 

to joule heat (Aim 2). In this study, we conducted phantom study (a controlled experiment) to 

isolate if there is any joule heat during the stimulation assuming the skin respond like a 

homogenous structure. After establishing the extent of joule heat produced on the phantom study, 

we conducted human study by stimulating readily accessible human skin (forearm). There was no 

significant temperature increase due to joule heat in phantom or in a model of the phantom – which 

can suggest either prior attempts to model the skin as a simple structure do not capture joule, or 

that joule heat is in any case not significant. To try and distinguish these two possibilities, we 

developed a multi-layer skin model incorporating Penn’s heat transfer multiphysics to specifically 

predict in a more realistic skin model the impact of joule heat during tDCS. 

Chapter 4 presents the first realistic and anatomically detailed skin model incorporating 

skin ultrastructures such as sweat glands, hair follicles, and blood vessels, and complex tissue 

layers to describe their role in current flow (Aim 3). In this computational study, we transitioned 

from a multi-layer skin model (Aim 2) to a high-resolution anatomically realistic and detailed skin 

model with ultra-structures. In this chapter we predicted the role of each ultrastructure in current 
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flow pattern through skin which could in turn be related to experimental skin reddening or skin 

heating. 

Appendix 1 describes a method to isolate individual electrode resistance during tDCS. High 

electrode resistance is an indicative of poor electrode conditions or non-optimal conditions at the 

skin or electrode skin interface. Thus, monitoring electrodes during tDCS promote tolerated 

stimulation. In this study, we proposed a novel method to monitor individual electrode resistance 

during tDCS using a super-position of direct current with a test-signal (low intensity and low 

frequency sinusoid with electrode-specific frequencies) and a sentinel electrode (not used for DC). 

Assumptions were tested and parameterized in participants using the forearm stimulation 

combining tDCS (2 mA) and test-signals (38 and 76 µA peak-peak at 1,10, and 100 Hz) and in 

vitro test (creating electrode failure modes). The DC and AC components voltages across the 

electrodes were compared and the participants’ subjective pain was rated using a VAS scale. 

Appendix 2 validates the performance of the first “dry” electrode for tDCS against the 

state-of-the-art conventional wet sponge-electrode to test the hypothesis that whether tDCS can be 

applied with dry electrode that has comparable tolerability profile as conventional “wet” 

techniques. Multilayer hydrogel composite (MHC) dry-electrode performance was verified using 

a skin-phantom, including mapping voltage at the phantom surface and mapping current inside the 

electrode using a novel biocompatible flexible printed circuit board current sensor matrix. MHC 

dry-electrode performance was validated in human study including tolerability (VAS and adverse 

events), skin redness (erythema), and electrode current mapping. Experimental data form the skin-

phantom stimulation was compared against a finite element method (FEM) model. 

Appendix 3 presents a new electrode design validation and an adaptive controller to 

provide tDCS up to 4 mA, while managing tolerability. In this parallel-group participant-blind 
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design with 50 healthy subjects, we used specialized electrodes to administer 3 daily session of 

tDCS for 11 min, with a lexical decision task as a distractor, in the five study conditions: adaptive 

4 mA, adaptive 4 mA with Relax-button, adaptive 4 mA with historical-Relax-button, 2 mA, and 

sham. A tablet-based stimulator with a participant interface regularly queried VAS pain score and 

also limited current based on impedance and tolerability. An Abort-button provided in all 

conditions stopped the stimulation. In the adaptive 4 mA with Relax-button and adaptive 4 mA 

with historical-Relax-button conditions, participants could trigger a Relax-mode ad libitum, in the 

latter case with incrementally longer current reductions. Primary outcome was the average current 

delivered during each session, VAS pain score, and adverse event questionnaires. The delivered 

current was analyzed either excluding or including dropouts who activated Abort (scored as 0 

current). 

Appendix 4 presents a concept of a technology called Within Electrode Current Steering 

(WECS) that enhances the sophistication of electrode design to further enhance tolerability and 

promote broad (e.g., home) use of tDCS. The WECS adjusts current between electrodes not in 

contact with the tissue but rather embedded in an electrolyte on the body surface with the goal of 

not altering the brain current flow but rather compensate for nonideal conditions at the skin.  This 

technology leverages our technique for independently isolating electrode impedance and 

overpotential during multichannel electrical stimulation. Here, we demonstrated the principles of 

WECS using an exemplary electrode design typical for tDCS (four rivet-electrodes sponge) and 

extremes of current steering (from uniform in all rivets to a single rivet). Through FEM simulation 

of this illustrative case, we validated the underlying assumptions of WECS: steering current within 

electrodes but without altering current distribution in brain target. This idea supports future studies 
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in optimization of electrode design, automation of algorithms to control current (including using 

impedance measurement), and ultimately validation under experiment conditions.  

Appendix 5 describes the first approach to establish the role of tissue heating in kilohertz 

spinal cord stimulation (kHz-SCS). We hypothesized that kHz-SCS increases local tissue 

temperature by joule heat which may influence the clinical outcomes. Temperature increases were 

quantified in an experimental bath phantom and these data were used to verify a SCS lead heat-

transfer model based on joule heat. Temperature increases were then predicted in a seven-

compartment (soft tissue, vertebral bone, fat, intervertebral disc, meninges, spinal cord with nerve 

roots) geometric human spinal cord model under varied parameterization. The experimentally 

constrained bio-heat model shows kHz-SCS waveform (waveform RMS) determines tissue 

heating which increases supralinearly with stimulation power and is sensitive to incremental 

changes in SCS waveform parameters (pulse compression).  

Appendix 6 proposes a general theory called quasi-uniform assumption in spinal cord 

stimulation that postulates local electric field predicts neuronal activation. We developed a finite 

element models of cat and rat SCS, and brain slice alongside human SCS models. Clinically and 

across animals, electric fields change abruptly over small distance compared to the neuronal 

morphology, such that each neuron is exposed to the multiple electric fields. Per unit current, 

electric fields generally decrease with body mass, but not necessarily and proportionally across the 

tissues. 

Appendix 7 is about the 10 kHz-DBS which build upon our earlier hypothesis that kHz-

frequency SCS (10 kHz) modulates neuronal function through moderate local tissue heating. To 

establish the role of tissue heating in 10 kHz-DBS, as the first decisive step, we characterize the 

range of temperature changes during clinical kHz-DBS protocols. We developed a high-resolution 
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MRI-derived DBS model incorporating joule-heat coupled bio-heat multi-physics to establish the 

role of tissue heating. Volume of Tissue Activated (VTA) under assumptions of activating-

function (for 130 Hz) or heating (for 10 kHz) based neuromodulation were contrasted. We found 

that DBS waveform power (waveform RMS) determine joule heating at the deep brain tissues. 

Peak heating was supra-linearly dependent on the stimulation RMS. Tissue parameter analysis 

predicted that subthalamic nucleus (STN) heating was especially sensitive to decrease in enCAP 

electrical conductivity and decreases in STN thermal conductivity. Subject to validation with in 

vivo measurements, neuromodulation through a heating mechanism of action by the 10 kHz-DBS 

can indicate novel therapeutic pathways and strategies for dose optimization. 

Appendix 8 proposes an open-source spinal cord model with precision in the anatomical 

details to serve as a standard for the SCS simulation. We developed a sophisticated SCS modeling 

platform, named Realistic Anatomically Detailed Open-Source Spinal Cord Stimulation (RADO-

SCS) model. This platform consists of realistic and detailed spinal cord and ancillary tissues 

anatomy derived based on prior imaging and cadaveric studies. In our finite element model of the 

T9-T11 spine levels, we represented the following tissues: vertebrae, intervertebral disc, epidural 

space, epidural space vasculature, dura mater, dural sac, intraforaminal tissue, cerebrospinal fluid 

(CSF), whitematter, spinal cord vasculature, Lissauer’s tract, gray matter, dorsal and ventral roots 

and rootlets, dorsal root ganglion (DRG), sympathetic chain (trunk and ganglion), thoracic aorta 

and its branching, peripheral vasculature, and soft tissues (thorax). As an exemplary application to 

illustrate the model workflow, we simulated a bipolar SCS montage and calculated the 

corresponding activation thresholds for individual axons populating the spinal cord. RADO-SCS 

provides precision across 19 tissue compartments. The resulting model calculations of the electric 

fields generated in the white-matter and gray matter, and the axonal activation thresholds are 
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broadly consistent with prior simulations. The RADO-SCS can be used to simulate any SCS 

approach with both unprecedented resolution (precision) and transparency (reproducibility). 

Freely-available online, the RADO-SCS will be updated continuously with version control. 

The final section of this dissertation summarizes the main findings of the Aims, proposes 

general considerations for reconciling the experiments with model predictions, and discusses the 

future directions. In addition, we also consider how the novel hypotheses, techniques, and tools 

developed in the Appendices could be tested in future.  
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Chapter 2: The influence of Skin Redness on Blinding in Transcranial 

Direct Current Stimulation Studies 

 

2.1. Outline  

This chapter describes Aim 1 of the thesis where we used a novel approach of quantifying 

skin reddening profile and assessed whether the tDCS-induced skin reddening profile matches the 

local current density profile predicted by the FEM model. A version of the experimental 

component has been published (Ezquerro et al., 2017). In this chapter, we aimed to analyze 

whether there is a correlation between the experimental skin reddening profile and the model 

predicted local current density profile by generating a spatial reddening profile on a population 

level. 

2.2.  Introduction  

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation 

technique that involves delivery of a weak, direct current to the brain through electrodes placed 

over the subject’s scalp (Brunoni et al., 2012). TDCS has been increasingly investigated as a 

possible treatment for diverse neuropsychiatric disorders (Sampaio-Junior et al., 2018). Not with-

standing the presence of well-designed and conducted trials (Tortella, 2015), the overall number 

of studies is still small, especially studies with moderate to large sample sizes. Thus, improved 

techniques and protocols are warranted to enhance internal validity and research quality (Khadka 

et al., 2015a; Niranjan Khadka et al., 2019d; Woods et al., 2016). Optimal blinding techniques 

remain a concern in tDCS trials. In a canonical study, Gandiga et al. 2006 used a sham method 

that consisted of a brief period of 1mA stimulation followed by no stimulation until the end of the 

session, concluding that sham tDCS could be successfully used in double-blind trials, as subjects 
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were not able to distinguish between real and sham stimulation. However, recent evidence 

suggested that Gandigaet al.’s method is in adequate in some contexts, such as rater’s blinding, 2 

mA current intensity, cross-over designs and non-naive tDCS subjects (O’Connell et al., 2012). 

Skin redness (erythema) after tDCS is one reason for inadequate investigator blinding. Palm and 

collaborators (Palm et al., 2013) found that operators, even when blinded using tDCS devices with 

a number code that automatically delivers active or sham stimulation, were able to differentiate 

between active and sham stimulation based on skin reddening after active tDCS. Causes for tDCS 

erythema may include irritation by the saline, iontophoresis of substances present in skin prior to 

stimulation (makeup, sunscreen, cleansing substances, etc.), pressure by headgear, and the 

stimulation itself; whereas electrode design and thickness, gender, skin type, nature of stimulation 

(anodal or cathodal), and amperage of stimulation may mediate its intensity (Dundas et al., 2007a; 

Guarienti et al., 2015; Guleyupoglu et al., 2014). Although subjects’ blinding can be managed by 

avoiding self-inspection of the forehead immediately after stimulation, this can be particularly 

troublesome for raters who are assessing outcomes immediately after the end of stimulation. For 

instance, (O’Connell et al., 2012) reported that erythema was noted after 60% of active stimulation 

sessions, compared to 1% after sham; moreover, 98% of the investigators associated noticeable 

skin redness with active stimulation. The authors also noticed that some skin redness persisted for 

several minutes beyond the end of stimulation. Recent studies have been conducted to characterize 

and control tDCS-induced erythema. Prior study has reported that skin pretreatment with 

ketoprofen reduces tDCS-induced erythema (Guarienti et al., 2015), although such approach 

inconveniently increases the preparation time. In addition, electrode-sponge geometry (rectangular 

vs. round-shaped) was explored as a method for improving bias (Ambrus et al., 2011); however, 

no difference was observed on the potential for blinding. Larger electrode size was also found to 
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be associated with cutaneous discomfort (Turi et al., 2014). However, no study hitherto has 

objectively evaluated the influence of tDCS-induced erythema on investigator blinding, or whether 

it is dependent on specific brands of available electrodes. Therefore, this issue was investigated in 

the present study.  

The main objective of this study was to explore whether tDCS-induced skin reddening 

profile tracks model predicted current density profile at the skin. The hypothesis was that tDCS-

induced skin reddening profile matches the current density profile as predicted by the prior models. 

In addition, we proposed two sub-hypotheses: 1) Skin reddening profile is different between sham 

and active stimulation; 2) Skin reddening profile is electrode type dependent. To this end, we used 

high-definition skin photographs of tDCS-induced erythema, presented at random to investigator, 

and used semi-automated image processing to determine redness and simulated a probability skin 

heatmap, and surface area coverage of redness using image processing software.  

2.3.  Materials and methods 

2.3.1. Subjects 

We recruited 26 healthy volunteers (21 women and 5 male) aged between 18 and 45 years 

(M = 526.2; SD = 54.7) who were naive to tDCS applications and presented no active dermatosis, 

skin allergy, skin marks, recent exposure to intense sunlight or artificial tanning, systemic skin 

treatment or topical skin treatment in the region where the electrodes were placed. We further 

categorized the volunteers based on their skin tone using Fitzpatrick scale. Out of the 26 

volunteers, 21 were Caucasian (Fitzpatrick scale: Type II), 4 were Mediterranean Caucasian 

(Fitzpatrick scale: Type III), and 1 was African-American (Fitzpatrick scale: Type IV). The local 
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and national ethics committees approved the study and all participants provided written informed 

consent. 

2.3.2. Materials 

We used two different sets of sponges in this study: “thick” sponges (5.6 mm thickness), 

manufactured by Soterix Medical (Soterix Medical Inc., NY, USA) and “thin” sponges (1.5 mm 

thickness), manufactured by Neuroconn (Neuroconn GmbH, Munich, Germany). These sponges 

are commonly used in tDCS trials, both being cellulose-based, 535 cm wide, and behave similarly 

to absorb saline. 

2.3.3. Design 

Our independent variable was stimulation condition (3 levels: thick-active, thin-active, and 

sham). Dependent variables included the region-of-interest probability heatmap for erythema. 

Following a within-subject design, participants received three stimulation sessions 

separated by one-week intervals: active tDCS with thick sponge, active tDCS with thin sponge and 

sham stimulation (in this case, in half of sham sessions we used thin sponges and, in the other half, 

thick sponges). The sequence was “active thick” on week 1, then “sham” on week 2, and finally 

“active thin” on week 3.  

2.3.4. Procedures 

The study was conducted in rooms with controlled temperature and humidity (temperature 

20 oC ± 2oC, relative humidity 50 % ± 5 relative humidity) as to ensure standardization of the 

dermatologic evaluation. As participants presented to the study, they were inter-viewed for 

exclusion criteria, demographics, medical history, use of contraceptives and other medications, 
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sun exposure and other life habits since childhood. High-resolution skin images were acquired 

before tDCS sessions, then again 5, 15, and 30 min after. Each day, stimulations were per-formed 

after gentle cleansing of forehead with ethanol. In case the participant wore make-up, a thorough 

face wash was requested with a 30 min interval for the beginning of procedures (including the 

baseline photograph).  

2.3.5. tDCS Protocol 

The anode was placed in the right supraorbital (SO) region. The electrode location was 

standardized with positioning according to the following parameters: the uppermost limit of the 

right eyebrow, in the line of the pupil, was the downmost inferior limit to place the inferior border 

of the electrode; transversally, the medial border of the electrode corresponded to the medial limit 

of the eyebrow. The anode was held by plastic straps in such a way to assure an even amount of 

pressure across the whole area of the electrode. The cathode was placed over the vertex area and 

its position was fixed by plastic straps. The rationale for this was that we aimed for optimal image 

acquisition and the most even electrode placement over de skin with littlest inter-subject 

anatomical bone surface variation; the right side was an arbitrary standard. Only anodal stimulation 

was tested in this study, based on previous finding of our group showing that anodic DCS generates 

more intense erythema (Guarienti et al., 2015) and to keep consistent across conditions. 

Stimulations were carried out using 131 tDCS devices (Soterix Medical Inc., New York, NY, 

USA). The active stimulation consisted of 30 min of a 2 mA current intensity plateau, with ramp-

up and ramp-down periods of 45 sec and 15 sec, respectively. Sham stimulation consisted of a 30-

min interval with no current, with a brief period (60 sec) of 2 mA stimulation at the beginning of 

the session, with ramp-up and ramp-down periods of 45 sec and 15 sec, respectively. The sponges 

were soaked with saline solution (NaCl 0.9%). 
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2.3.6. Image Data Protocol 

A VISIA imaging System (Canfield Scientific, Fairfield, NJ, USA) was used to photograph 

the forehead of the subjects using a combi-nation of regular white light, 365 nm wavelength UV 

light and cross-polarized lightning flashes. A total of 292 photos from 26participants were obtained 

(4 per session per subject except for 20(<6.5%) images that were missed due to technical reasons). 

The photographed images are of very high definition (21 Megapixel resolution, 3433 x 4171 pixels 

size, image DPI 96 pixels/inch, file size 8.4 MB); 145mm (width) per 175 mm (height). They were 

then presented in a random order to the naïve rater.  

 The high definition images of subjects’ forehead photographed before and 5, 15, and 30 

min after the stimulation for active stimulation and sham phase (both using thin and thick 

electrode) were analyzed for erythema distribution using customized MATLAB (MathWorks, 

MA, USA) based image processing graphical user interface (GUI). Images corresponding to each 

phase were first randomized and were loaded in the GUI, which was designed to define a 5 x 5 cm 

region of interest (ROI) (corresponds to the length of the supraorbital (SO)) (Fig. 3A1a). Erythema 

beyond the ROI was not included in the analysis. Images were then filtered using Lab color space; 

the most accurate means of representing color, is device independent, and includes all of colors in 

the spectrum, as well as colors outside of human perception. Using a freehand tool enabled in the 

GUI, erythema inside the ROI was traced (Fig. 3A1b-d). The same rater traced erythema in all 

images for both active and sham stimulation cases. Erythema was separately traced as “mild” and 

“strong” inside the ROI. Assignment of the traces as “mild” and “strong” was based on comparison 

of natural tone of the facial skin (non-stimulated area) to the skin tone under the ROI. Traces of 

erythema were then binarized and normalized within the ROI (Fig. 3A2). Binary images were re-

categorized to their respective sections: thin, thick, and sham, as mild and strong erythema. Surface 



www.manaraa.com

21 
 

area of erythema trace inside the binary ROI was estimated first by finding the perimeter of the 

erythema distribution. Pixels that were part of the perimeter were only nonzero (1s) and were at 

least connected to one zero-valued pixel (0s). The default connectivity was 4 for a given 2D binary 

ROI. All the white pixels representing the erythema traces inside the ROI was enumerated and 

summed up to get surface area in pixels. Finally using a calibration factor, are in pixels was 

converted to area in centimeter square. The percentage erythema was calculated by dividing the 

ROI by erythema area, but the ROI is the same in each case. Mean of the combined, mild, and 

strong erythema distribution for active and sham phases was calculated (Fig. 3A3) and a 

probability heatmap of the distribution was generated (Fig. 3A4). 

 To analyze the spatial profile of erythema distribution, we defined multiple regions of 

interest (ROIs) at the edges (4), center (1), and hotspots (2). The size of each ROIs was 10% of the 

image size. Mean probability of skin reddening across the center ROIs and hot spot ROIs were 

compared.  

2.3.7. Statistical Analysis 

 The normality was tested using Shapiro-Wilk test and when normally distributed a 

corresponding parametric test otherwise a nonparametric test was used to establish significance. 

Non-parametric Wilcoxon rank sum test was used to compare erythema intensity between groups. 

Critical value of P < 0.01 was accepted as statistically significant difference between groups.  

2.4.  Results 

 For the results section, “sham group” indicates sham tDCS, “thin sponge” indicates active 

tDCS with thin sponge and “thick sponge” indicates active tDCS with thick sponge. 
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The calculated probability heatmap across active stimulation (using thin and thick 

electrode) and sham condition indicated that erythema was diffused across the ROI. For the “thin” 

sponge, the maximum likelihood of observing erythema was 69.88%; 51.81 % for mild and 21.69 

% for strong (Fig. 3B1). For “Thick” electrode, the maximum probability of erythema was 72.83 

%: 44.57% for mild and 34.78 % for strong (Fig. 3B2). In case of “sham” stimulation, the 

maximum probability of erythema in combined was 41.43 %; 31.43 % for mild and 8.57 % for 

strong (Fig. 3B3).  

 

Figure 3: Erythema distribution analysis in the region of interest (site of stimulation) for active (using 

thin and thick sponges) and sham stimulation. (A1a) Illustration of high definition images of subject 

photographed before and after the stimulation. (A1b) represents region of interest (ROI) and traced 

erythema distribution. (A1c and A1d) Representation of filtered Images using Lab color space to isolate 

erythema from regular skin color tone. (A2) illustrates binary image of erythema traces in the ROI. (A3) 

Illustration of the probability of erythema distribution calculation via stacking equidimensional binary 
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images. (A4) Probability heatmap of erythema distribution (in percentage) across the ROI. (B1) Graphical 

illustration of the calculated maximum combined probability of erythema distribution for the “thin” sponge. 

Distribution was diffused across the ROI. Mild erythema distribution (B1a) had higher probability than 

strong (B1b). (B2) represents a maximum combined probability of erythema distribution for “thick” 

electrode. Mild erythema distribution (B2b) was slightly higher than strong (B2a). (B3) Illustration of the 

maximum combined probability of erythema distribution for “sham” stimulation. Probability of the 

erythema distribution compared to the active stimulation sponge types was significantly lower. Mild 

erythema (B3a) had higher probability than strong erythema (B3b). 

To answer the question whether local current density pattern tracks the skin reddening 

profile, we analyzed the erythema probability within multiple square ROIs including edges and 

center of the electrode-skin interface (Fig. 4, black, gray, and blue squares).  ROIs were defined at 

the edges, middle, and hotspots to compare the mean erythema probability across ROIs. Across all 

stimulation groups, the sampled average erythema probability at the edge (Thin: 0.30; Thick: 0.21; 

Sham: 0.10) was lower than the middle (Thin: 0.54; Thick: 0.60; Sham: 0.34) (P < 0.01, Z = -

133.68; P < 0.01, Z = -137.87; P < 0.01, Z = -126.89 ) and the hotspots (Thin: 0.65; Thick: 0.67; 

Sham: 0.35) (P < 0.01, Z = -147.94; P < 0.01, Z = -148.16; P < 0.01, Z = -153.22 . This analysis 

concluded that unlike local current concentration at the edge, erythema is higher in the non-edge 

region (not uniform at the skin-electrode interface).  
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Figure 4: Regional analysis of erythema probability for different stimulation modalities. (A1, A2, A2) 

overall erythema probability and multiple ROIs (edges: 4 (green), hotspot: 2 (gray), and center: 1 (cyan)) 

defined to contrast the difference in erythema probability across regions. (B1) shows average erythema 

intensity for different ROIs (region color coded). Erythema at the non-edge regions were higher than edges. 

Next, we assessed difference in erythema probability for active stimulation and sham 

stimulation. Histograms of mean erythema distribution (probability) across groups were generated 

for combined, mild, and strong cases, and skewness or kurtosis values were reported (Fig. 5). 

Across all groups, the combined histograms for each group were negatively skewed (Thin: -0.98; 

Thick: -0.86; Sham: -1.16) indicating that mean and median erythema intensity were less than 

mode. There was a significant difference in erythema distribution (probability) between the active 

stimulation and sham stimulation (Combined Thin Vs Sham: P < 0.01; Z =5.6; Combined Thick 

Vs Sham: P < 0.01, Z = 6.69). Active stimulation have higher likelihood of both mild (Thin vs 
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sham: P < 0.01, Z = 1234; Thick vs sham: P < 0.01, Z = 1258) and strong (Thin vs sham: P < 

0.01, Z = 961; Thick vs sham: P < 0.01, Z = 254.72) skin reddening compared to sham. 

 

Figure 5: Histograms of mean erythema distribution for thin, thick, and sham group, categorized 

into combined, mild, and strong erythema. (A1, A2, A3) shows mean erythema distribution as combined, 

mild and strong (intensity vs number of pixels) for Thin electrode group, (B1, B2, B3) shows mean 

erythema distribution for Thick electrode group, and (C1, C2, C3) shows erythema distribution for Sham 

group. 

We further assessed the difference in mean erythema distribution (probability) between 

active stimulation and sham stimulation (Fig. 6). This analysis also confirmed that active 

conditions produces higher skin reddening compared to sham, and the skin reddening is not 



www.manaraa.com

26 
 

concentrated around the perimeter. Thus, the  skin reddening profile does not track the current 

density profile predicted by the skin FEM model. 

 

Figure 6: Erythema distribution difference across stimulation conditions. (A1, A2, A3) represents 

difference in probability of skin reddening between Thick Vs Sham and (B1, B2, B3) represents difference 

in probability between Thin Vs Sham. The spatial profile does not track local current density profile 

predicted by skin model.   

 In a separate analysis, we compared the erythema coverage across stimulation group. The 

mean erythema area (converted from pixels to cm2 using a calibration factor (3.6 cm reference 

length in each image)) was higher in active groups compared to sham (Thin: 9.49 ± 0.5797; Thick: 

9.67 ± 0.5756; Sham: 5.53 ± 0.70); Thin vs Sham: P < 0.01, Z = 4.06; Thick vs Sham: P < 0.01; 

Z =4.52.  

2.5.  Discussion 

 In this within-subjects study enrolling 26 healthy volunteers, we found that tDCS-induced 

erythema is generally mild to moderate. Interestingly, a very mild erythema occurred after sham 
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stimulation although erythema was significantly higher after active stimulation, and even higher 

for the thick compared to thin sponge. 

 Our image processing analyses confirm that sham is significantly different from active 

tDCS stimulation. This study presented a new approach semi-automated image analysis approach 

to evaluate erythema spatial profile. In previous studies, investigators quantified erythema by 

examining  site of stimulation site and rated erythema intensity (O’Connell et al., 2012). Even if 

investigators are blinded to the stimulation allocation group, they will be aware of the timing of 

stimulation (before vs. after stimulation). Moreover, non-verbal cues can break blinding during 

erythema examination (e.g., scratching during examination) and subjects can inadvertently report 

other adverse events to the investigators. By asking investigators to evaluate erythema through 

high-definition skin photographs presented at random, we were able to eliminate this source of 

bias. Conversely, in our study, erythema evaluation might be overestimated compared to the usual 

trial where investigators only do a quick visual inspection of the skin. 

 We implemented a novel approach of analyzing erythema using images acquired using 

high-resolution imaging system, and estimated a probability heatmap on the skin area, which 

presumably represents the erythema distribution under the electrode. This model also corroborated 

with prior observation of skin redness visible after sham stimulation. This might have occurred for 

some reasons such as 1) the brief period of active stimulation at the session onset;2) pressure of 

the pad, depending on how it is fixed; and 3) irritation of the skin due to the saline solution. 

Erythema was mild across stimulation groups which is in agreement with prior observations 

(O’Connell et al., 2012; Palm et al., 2013). In the active groups, there was no difference in 

erythema. Moreover, redness does not concentrate around pad edges, but it is rather diffuse (non-

uniform) under the electrode. Assuming that the electric current causes redness, it seems that 
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current density is non-uniform below the pad (profile does not match with FEM predicted current 

density), and redness would be caused by an increase in blood perfusion among the tissue (Durand 

et al., 2002). This is in contrast to a previous modeling study that predicted higher current density 

at the center of a thin sponge and higher current density at the edges with thick sponge (Miranda 

et al., 2006; Wagner et al., 2007). However, that model did not fully capture the inhomogeneity 

and anisotropy within the skin; for instance, skin/scalp was considered a combined mass of muscle, 

skin, fat and connective tissues. A more recent model also estimated higher current densities at the 

edges when conductivity is high (Saturnino et al., 2015). Nonetheless, our finding reinforces the 

need to validate modeling studies empirically. 

 The implications of our erythema results in informing tDCS trial design should be taken 

with caution. First, our results are specific to the headgear (e.g., presuming sham erythema reflects 

pressure), electrode technologies, electrolyte (gel/saline/cream) used, subject demographics, and 

waveforms tested. We in fact show a dependence on electrode design and skin type. Trial-specific 

considerations would determine the need and value to mitigate erythema-related sham concerns. 

At a minimum, researchers should be rigorous in controlling and reporting relevant headgear and 

electrode, as well as other factors that could induce erythema. Simple methods to conceal exposed 

skin areas can be implemented. If appropriate, erythema intensity can be reduced by topic 

ketoprofen2% before stimulation (Guarienti et al., 2015). Triple-blind studies where the raters do 

not apply tDCS reduce confound of operator unblinding. Importantly, our protocol involved either 

trained operators or quantified segmentation, with optimal lighting and image capture, and with 

the targeted intention to identify erythema difference across arms, something impractical for 

regular use in tDCS trials. 
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 Our findings, therefore, do not necessarily contradict conventional experience in tDCS 

trials where sham was found effective by operator and subject reports, but rather raise the alert for 

more detailed report of procedures used in future research to conceal stimulation group allocation, 

since it is now well documented that erythema is an independent factor for breaking investigator 

blinding in within-subjects design. 
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Chapter 3: Minimal Heating at the Skin Surface During Transcranial 

Direct Current Stimulation 
 

3.1. Outline 

 This chapter describes Aim 2 of the thesis where we investigated whether tDCS produces 

significant skin heating and if any skin heating is due to joule heat. A version of this study has 

been published (Khadka et al., 2018b). In this chapter, we aimed to measure temperature increase 

at the skin surface during tDCS using multiple temperature sensors positioned around the perimeter 

and the center of sponge pad. In addition, a standard phantom was used to measure any temperature 

increase due to joule heat. The modeling of the phantom served to verify the simple model 

assumption which did not reflect accurate skin heating due to joule heat. Therefore, we developed 

a multi-layer skin model (epidermis, dermis, and fat) incorporating blood perfusion and 

metabolism to reliably predict temperature increase due to joule heat (through resistivities of skin 

layers). 

 

3.2. Introduction 

 Transcranial Direct Current Stimulation (tDCS) is investigated as a non-invasive 

neuromodulation tool in healthy and patient populations (Nitsche and Paulus, 2000). Transient 

cutaneous sensation (e.g. itching, tingling, warmth) and skin erythema (so called “flare”) are the 

primary reported side effects of tDCS (Nitsche et al., 2008). Only using non-optimal materials and 

procedures cause severe skin irritation (Bikson et al., 2009; Poreisz et al., 2007). These adverse 

skin responses can be minimized by following established protocols in dose and electrode 

preparation (Brunoni et al., 2012; Woods et al., 2016), monitoring electrode resistance (Khadka et 
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al., 2015a; Merrill et al., 2005), and using proven electrode designs (Brunoni et al., 2011; Woods 

et al., 2016) or more advanced electrode techniques (Kempe et al., 2014; Khadka et al., 2015b).  

 

One of the concerns to be addressed during the tDCS stimulation is the change in 

temperature at the skin surface. These changes might be stimulation polarity (anode or cathode) 

specific, contributed due to passive heating (joule heat), or due to change in blood perfusion. Small 

non-injurious changes in skin temperature during tDCS may influence cutaneous sensation 

(Lagopoulos and Degabriele, 2008) and even influence current flow patterns to the brain (DaSilva 

et al., 2011; Gholami-Boroujeny et al., 2015). Such changes may also confound blinding of 

subjects (e.g. sensation of warmth that is based on real temperature changes) or operators (e.g. in 

the active case sponges are warmer). However, the exact mechanism of burning sensation in still 

unknown. If the burning sensation was related to temperature, it could be polarity specific (under 

anode or cathode), contributed by passive heating, or vascular flare response. Although higher 

temperature changes may be injurious and contribute to less tolerable treatment, prior experimental 

and finite element method (FEM) modeling studies have curtailed a role for significant temperature 

increases during tDCS (A. Datta et al., 2009; Palm et al., 2008). Prior works have inadequately 

addressed skin temperature during tDCS. Nitsche and Paulus (Nitsche and Paulus, 2000) measured 

skin temperature during a 5 min 1 mA tDCS but didn’t report any temperature increase. FEM 

models have predicted no temperature increase at the skin (Datta et al., 2009; Gomez et al., 2016). 

These models were basic/simplistic and didn’t capture the realistic anatomy and detailed tissue 

layers. 

 

This current study also builds upon the prior study by Datta et al., 2009 where no significant 

temperature rise at the sponge- electrode and the scalp interface was predicted by the FEM 
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simulation of 2 mA 4 X 1 ring HD-tDCS and conventional tDCS. tDCS produces skin heating and 

it is due to joule heat is the hypothesis of this study. Here, using an array of precise thermocouples, 

we measured temperature changes at the electrode-sponge and the agar phantom interface, and the 

skin interface, on an easily accessible area of skin such as forearms, during anodal, cathodal, and 

sham stimulation. Though systemic (centrally mediated) temperature changes during tDCS have 

not been observed (Raimundo et al., 2012), we none-the-less stimulated subjects’ forearms to 

remove a central confound.  

As a first demonstration, we implemented detailed experimental measures along with 

computational FEM model of an agar phantom (control experiment where vasculature is absent) 

and a skin (that included a vascular flare response (Dusch et al., 2009, 2007; Guarienti et al., 2015)) 

to determine the role of joule heating versus vascular flare (explained in discussion section) on any 

temperature changes.  

 

3.3.  Materials and Methods 

 This study involves experimental measurements in phantom and participant, and FEM 

simulation for stimulation (anode or cathode) and control cases.  

3.3.1. Participants 

 

Twenty healthy subjects (14 males and 6 females; age range 20-30 years; mean age 23.5 ± 

2.5) volunteered in the study. Participants with any form of skin disorders or preexisting injuries 

at the sites of stimulation were excluded. The CCNY local Ethics Committee granted approval for 

this study and a written informed consent from the participants was collected before conducting 

the experiment. Participants were seated in a relaxed position.  
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3.3.2. Stimulation and Temperature Measurement 

A constant current stimulator (1x1 tDCS, Soterix Medical Inc., NY, USA) was used to 

administer direct current for all trials through a pair of rubber electrodes (2 x 3 cm) placed into 

two saline (0.9% NaCl) soaked sponge pockets (35 cm2 skin contact area, EasyPads, Soterix 

Medical Inc., NY, USA). Direct current intensity of 2 mA was applied for 20 min with an 

additional linear ramp up and down of 30s at the beginning and at the end of stimulation. Eight 

type- K thermocouples probes (Digi-Key Electronics, MN, USA) sensed by three dual input digital 

thermometers (~ ± [ 0.05% of reading + 0.3 0C] accuracy, 52II, Fluke Corporation, WA, USA) 

were positioned under the center and periphery of the anode, cathode, and control sponge-electrode 

to measure the temperature during stimulation (anode, cathode) and control (non-stimulation) 

electrode cases. Temperature was measured during stimulation (20 min), and pre-stimulation and 

post-stimulation (5 min each) phases for every minute. Measurement of temperature under the 

anode, cathode, and control was conducted during the same stimulation session – with the control 

electrode positioned on the opposite arm or at a distance location on the phantom. Experiments 

were conducted at the bench top in a temperature-controlled room and the ambient temperature 

was continuously monitored during the experiment using 2 similar type- K thermocouples as 

mentioned above. The ambient room temperature during the entire study remained nearly 

unchanged (22 ± 1.5 0C). 

3.3.3. Phantom study 

Agar phantom (2 % agar by weight; 20 gm agar ash and 1 gm NaCl to 1000 ml water, 

A7002, Sigma-Aldrich, MO, USA) was prepared using established standard protocols (Smith, 

1993). While conducting temperature measurement on the phantom, sponge-electrodes were 

positioned approximately 10.2 cm apart on a thin coated layer (~ 0.5 cm) of conductive electrode 
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gel (Signa gel, Parker Laboratories Inc., NJ, USA). Assigned electrode distance was based on our 

earlier study [8]. The electrode-sponge distance in the phantom study matched the in vivo study. 

Conductive gel layer was used to maintain consistent contact between the sponge-electrode and 

the gel. For stimulation case, a 2 mA DC was injected from the 1X1 tDCS stimulator via sponge 

electrodes and corresponding temperature under the electrodes were measured whereas for the 

control case, sponge electrodes were positioned on the phantom but not connected to the 

stimulator. 

3.3.4. In vivo study 

For in vivo study, skin was cleaned with dilute saline prior to the electrode placement. The 

sponge electrodes were then secured on the forearm of the participants using rubber straps (Elastic 

Fasteners “Blue”, Soterix Medical Inc., NY, USA) and were positioned proximal and distal to the 

forearm (Khadka et al., 2015a). Stimulation and control cases, and the corresponding temperature 

measurement were conducted following the aforementioned procedure. 

3.3.5. Temperature Analysis 

 

Temperature measurements at every minute during pre-stimulation, stimulation, and post-

stimulation phases for both phantom and in vivo studies were averaged across phantoms and 

subjects, and were normalized with respect to the initial temperature, which was considered a 

baseline (00C) as shown in Fig. 7A. Since the initial temperature upon the placement of the sponge-

electrodes at the skin or the phantom varied with the initial temperature of the saline soaked 

sponges and the ambient temperature, we considered initiation of the tDCS stimulation (t=5 min) 

as the “initial temperature” for normalizing temperature data. Temperature difference (∆T) was 
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calculated across all subjects and phantom studies for both stimulation and control cases. In case 

of the FEM simulations, ∆T was calculated at the given instant (t= 5, 10, 15, and 20 min). 

 

3.3.6. Computational model and solution method 

 

3.3.6.1. Heat Transfer 

Human skin was modeled as an inhomogeneous medium comprising three layers; 

epidermis, dermis, and subcutaneous layer (fat and connective tissue) where epidermis was 

superficial and avascular (presence of stratum corneum (SC)), while the underlying dermis and 

subdermal tissues were rich in vasculature (Wilson and Spence, 1988a). Each layer of the skin was 

modeled as a homogeneous and isotropic volume conductor and thickness values were based from 

prior literature (Wilson and Spence, 1988a). The anodal case was considered for the FEM multi-

physics (current flow and bioheat) model, however, none of the physics considered for the 

computational model were polarity specific. Heat transfer and temperature fields in the human skin 

was modeled using time-dependent bioheat equation Pennes equation as mentioned below: 

𝜌𝐶𝑝𝛻𝑇 = ∇. (𝜅∇𝑇) − 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏) + 𝑄𝑚𝑒𝑡                                      (1) 

where 𝜌, 𝐶𝑝, T, κ, and 𝑄𝑚𝑒𝑡 represent tissue density, specific heat, temperature, thermal 

conductivity and metabolic heat generation respectively. Similarly,𝜌𝑏, 𝐶𝑏, 𝜔𝑏, and 𝑇𝑏 are density 

of the blood, specific heat of the blood, blood perfusion rate, and temperature of arterial blood. 

Blood perfusion was constant in all vascular skin layers and the values for the properties of blood 

were assigned as:𝜌𝑏 = 1060 𝑘𝑔/𝑚3(Duck, 1990); 𝐶𝑏 = 3770 𝐽 /(𝑘𝑔. 𝐾); 𝑇𝑏 = 37 0𝐶 (Torvi and 

Dale, 1994). In order to account for the heat generation during electrical stimulation, equation (1) 

was further modified to include joule heating (𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∇(𝜎∇𝑉) = 0 where V: potential 

and σ: conductivity) and was given by: 
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𝜌𝐶𝑝𝛻𝑇 = ∇. (𝜅∇𝑇) − 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏) + 𝑄𝑚𝑒𝑡 + 𝜎|∇𝑉2|                                 (2) 

 

3.3.6.2.  Boundary and initial conditions 

The boundary condition at the top surface of the skin and sponge was simulated as 

convective heat loss to the ambient air, without explicitly considering heat loss to the surrounding 

due to evaporation. Therefore, the boundary conditions at the top surface of the skin and sponge 

electrode was 

      𝑞 = ℎ(𝑇𝑎𝑚𝑏 − 𝑇)                                                                               (3) 

                                                   h= 5 W/m2.K  ,    𝑇𝑎𝑚𝑏 = 24 0C (air temperature) 

where h is the convective heat transfer coefficient and 𝑇𝑎𝑚𝑏 was ambient temperature (averaged 

from in vivo study). Bottom surface of subcutaneous layer was set to be at core temperature (𝑇𝑐𝑜𝑟𝑒) 

and the boundary condition was (𝑇𝑐𝑜𝑟𝑒= 37 0C).                                                                                      

Initial temperatures (T0) for electrode-sponge (22.5 0C), top layer of skin (surrounding 

epidermis=32.5 0C, and epidermis section underpad =29.02 0C) were based on experimental 

measurement. The underlying dermis (33 0C) and subcutaneous layer (33 0C) temperature was set 

slightly higher than the epidermis due to vasculature and proximity to the core (Wilson and Spence, 

1988a).  

For electrical stimulation, boundary conditions were applied as normal current density 

(inward current flow:𝐽𝑛𝑜𝑟𝑚) at the top exposed surface of anode and ground at the bottom surface 

of subcutaneous layer. Uniform current density corresponding to 2 mA intensity was applied 

through a rubber electrode (σ=0.947 S/m; κ=0.2 W/(m.K), (Khanam et al., 2015)), embedded inside 

sponge pocket (σ = 1.4 S/m; κ =0.6 W/(m.K), (Minhas et al., 2011). All other external surfaces of 

the model were electrically insulated. Dimensions of rubber electrode and sponge were set 

according to the experimental protocol. 
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The thermophysical parameters of biological tissue layers were based on average of prior 

literature (Duck, 1990; Pavšelj et al., 2007; Torvi and Dale, 1994; Werner and Buse, 1988; Wilson 

and Spence, 1988a). Epidermis under the wet sponge (σ = 0.16 S/m; κ =0.235 W/(m.K)) was 

assigned higher conductivity compared to the surrounding dry epidermis (σ = 0.0004 S/m; κ = 

0.235 W/(m.K)) due to the water content in the saline. Blood perfusion in the vascular tissues was 

increased with current density, simulating stimulation-induced erythema (flare response). Dermis 

(σ = 0.23 S/m; κ = 0.450 W/(m.K), 𝜔𝑏= 0.0020 𝑠−1, 𝑄𝑚𝑒𝑡= 400 𝑊𝑚−3) and subcutaneous layer 

(σ = 0.02 S/m; κ = 0.185 W/(m.K), 𝜔𝑏= 0.001 𝑠−1, 𝑄𝑚𝑒𝑡= 400 𝑊𝑚−3) have blood perfusion due 

to vasculature, hence metabolic heat generation. 

The phantom was modeled using equation (1) and (2) neglecting the biological tissue 

parameters. The boundary and initial temperatures of the phantom were set based on experimental 

measurement (𝑇𝑐𝑜𝑟𝑒=T0 =24 0C). The electrical conductivity and thermal conductivity of agar 

phantom were 0.05 S/m and 0.07 W/(m.K) respectively (Bennett, 2011). 

3.3.6.3.  Computational Method 

 

Computer aided design (CAD) models of skin layer geometry consisting epidermis, dermis, 

subcutaneous layer, sponge, and electrode (Figure 2B1) were assembled in SolidWorks 2013 

(Dassault Systemes Americas Corp., MA, USA) and were imported as an assembly in COMSOL 

Multiphysics 4.3 (COMSOL Inc., MA, USA) to solve the model using a finite element technique. 

The phantom model was solved implementing the same methods as the skin model. Volumetric 

meshes for the skin and the phantom model were generated as Physic-controlled mesh with an 

average element quality of greater than 0.5. The final FEM skin model was solved for greater than 

2,000,000 degrees of freedom and had greater than 1,700,000 tetrahedral elements whereas in the 
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phantom model, the degrees of freedom was greater 600,000 and had greater than 400,000 

tetrahedral elements. In our study, we considered the steady-state solution (temperature obtained 

by evaluating the model under non stimulation condition) as the initial conditions for the time-

dependent study (20 min stimulation with a time step of 0.01 sec) of temperature elevation. Bio-

heat transfer physics in biological tissues (for the skin) and solid (for the phantom) were solved 

for stimulation and non- stimulation cases and the temperature were predicted. Current density 

streamlines were generated for the stimulation case (skin) to illustrate the distribution of current 

on the surface and through different tissue layers (Fig. 7B2). Streamlines were seeded uniformly 

from the top surface of the rubber electrode and were proportional to the logarithm of current 

density magnitude. 

Datasets from the computational result of the skin and the phantom volume plots (non-

stimulation and stimulation cases) were exported from COMSOL and were analyzed in MATLAB 

R2016a (MathWorks, MA, USA) to calculate the temperature difference (ΔT). Since the FEM 

model was first solved under steady-state condition and later its solutions were used as the initial 

conditions for the time-dependent study, we considered temperature at t=1 min as the initial 

temperature for the ΔT computation of both phantom and skin model. 

3.3.7. Statistical analysis 

Analyses were performed using Shapiro-Wilk test to access normality of temperature 

difference across active stimulation (anodal, cathodal) and control groups. Statistically significant 

differences (p < 0.01) in ΔT between polarities (anode, cathode, and control) were probed using a 

non-parametric analysis. Specifically, a Wilcoxon signed-rank test was used to analyze the t 

temperature difference (ΔT) under the control, compared to the anode and cathode, and also to 

investigate an interaction between control and stimulation cases. Calculated p-values were 
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corrected using the false discovery rate (FDR) where the discovery signifies the rejection of the 

null hypothesis that there is no difference between the temperature change at the polarities (anode, 

cathode, and control). A critical value of less than 0.01 was accepted as a significant difference 

between the groups. 

3.4. Results 

 Temperature changes at the skin surfaced under electrodes during active direct current 

stimulation (2 mA, 20 minutes) and control (0 mA, 20 minute) conditions were recorded on subject 

forearms and a specially constructed phantom. Additionally, temperature increases were also 

simulated using bio-heat FEM models of the skin and phantom surface. In both phantom and 

subjects, we observed a dynamic temperature variation reflecting difference in the initial 

temperature at the skin electrode interface when the sponges were initially placed on the forearm 

at a given ambient room temperature in all cases. Therefore, all analysis was performed relative to 

the temperature at the surface of the skin, 5 minutes after the sponge was initially placed; 

corresponding to when stimulation was initiated in the active stimulation case (Fig. 7C1 and 7D1).  

Average temperature difference (ΔT) across stimulation group and control in the phantom 

was less than 0.1OC (Fig. 7C1). The temperature difference (ΔT) in the phantom was not 

significantly different under both anode (Mdn =0.0687 OC) and cathode (Mdn = 0.046 OC), 

compared to control (Mdn = 0.0260 OC) (P = 0.0771, P = 0.4126). Furthermore, ΔT was 

independent of electrode polarity (anode (Mdn = 0.0687 OC), cathode (Mdn = 0.0460 OC), P = 

0.2036, Fig. 7C1). 

Stimulation of subjects resulted in a gradual increase in temperature under both anode and 

cathode, compared to control (for example at t = 20 min: ΔTanode = 0.9 0C, ΔTcathode = 1.1 0C, 

ΔTcontrol = 0.05 0C as shown in Fig. 7D1). The ΔT under cathode (Mdn=0.6327 0C) was 
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significantly higher than control (Mdn = 0.0442 0C) at t ≥10 min, Z = -2.6133, P = 0.0090, r = 

0.58. Similarly, ΔT at t ≥14 min under the anode (Mdn = 0.4769 0C) compared to the control 

(Mdn=0.0442 0C) was also significant, Z = -2.389, P = 0.0169, r = 0.53 (Fig. 7D1). Interaction of 

ΔT at the anode and the cathode was not significant, Z = -0.5973, P = 0.5503, r = 0.133.  

 

 

Figure 7: Skin surface temperature changes under tDCS electrodes during pre-stimulation, 

stimulation, and post-stimulation phases in the phantom from in vivo studies, and FEM simulations. 

(A) Average temperature change in subjects (right) and phantom (left) normalized to temperature at t= 0. 

The error bars indicate standard error of mean (SEM). In the phantom, ΔT was approximately same across 

test samples and mode of stimulation, whereas in the in vivo study, maximum ΔT was measured under the 
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active electrode (max. under cathode) during stimulation compared to the control. (B1) Architecture of a 

skin model showing skin layers (epidermis, dermis, and subcutaneous layers) and electrode positioning on 

the skin surface. (B2) represents an orientation of current density flow streamlines inside the different skin 

tissue layers. (C1) Analysis of normalized average ΔT in the phantom study (p < 0.01). No significant 

difference in ΔT was found in the control, compared to the anode and the cathode. (C2) Illustration of 

predicted ΔT for the non- stimulation (control) and stimulation cases in the FEM phantom model. Predicted 

results indicated no significant effect of stimulation on the phantom. (D1) In vivo analysis of temperature 

difference over time within subjects during pre-stimulation, stimulation, and post-stimulation. Red and 

green asterisks symbolize statistically significant difference (p < 0.01) between anode and control, and 

cathode and control respectively. There was a significant difference in ΔT under the anode (p < 0.01) and 

the cathode (p < 0.01), compared to the control. Temperature under both anode and cathode gradually 

increased due to stimulation, compared to that of control. (D2) FEM representation of the predicted ΔT in 

the skin model. Maximum ΔT of 1.36 0C was predicted during direct current stimulation by the FEM model. 

The FEM model of stimulation on the skin and phantom predicted current flow pattern 

produced across the tissue/phantom (Fig. 7B2) and the coupled change in heat and blood flow (for 

the case of the skin). The phantom FEM model predicted a comparable maximum ΔT of 0.027 0C 

and 0.028 0C (at t= 20 min) for the non-stimulation (control) and stimulation (anode/cathode) cases 

respectively (Fig. 7C2). A maximum ΔT of 0.98 0C was predicated by the FEM skin model at t=20 

min for the non-stimulation case, whereas for the stimulation case, ΔT was 1.36 0C (Fig. 7D2). 

Compared to the control case, tDCS induced a moderate temperature rise (ΔT = 0.38 0C) at the 

skin surface, as predicted by the FEM skin model (t=20 min).  

 

3.5. Discussion 

Any electrical stimulation might produce temperature changes; reflecting complex 

interactions between joule heat due to applied current across resistive tissue, changes in 
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metabolism (neuronal activation) or perfusion (flare), and heat conduction (Abram et al., 1980; 

Maged M. Elwassif et al., 2006a). Evidently, the results of our study are relevant only for the 

specific technology, dose, and subject conditions tested (c.f. transcranial magnetic stimulation 

(rTMS) in the presence of a heating clip (Hsieh et al., 2012)). Temperature changes in the body 

are typically considered unimportant in the efficacy or safety of neuromodulation technologies 

(Balogun et al., 1996; Cramp et al., 2000). We observed only incremental temperature changes at 

the skin surface during tDCS, independent of stimulation polarity and results from stimulation. 

Since changes were absent in the phantom, we propose that temperature elevation increases the 

anode/cathode reflected stimulation induced flare – a heating induced skin response due to 

increased blood flow. Skin surface temperature changes of ~1 0C are none injurious and within 

normal variation (e.g. due to exercise, environment; (Maged M. Elwassif et al., 2006a; Scudds et 

al., 1995)). Moreover, as this small increment is in fact compensating for a reduction in surface 

temperature following application of room-temperature sponges, and since perfusion-based 

heating is limited by the core body temperature of the blood, this mechanism is not hazardous.  

Our results are consistent with the tDCS perception of warmth being attributed to electrical 

nerve activation rather than heating (Abram et al., 1980; Cramp et al., 2000), and any significant 

skin irritation (that occurs only when standard protocols are not followed) being electrochemical 

in nature (Minhas et al., 2010). We analyzed temperature change at the surface of the skin (in vivo 

study) during stimulation (20 min) relative to the temperature after the pre-stimulation duration (5 

min) to account for the dynamic temperature changes reflecting difference in the initial 

temperature at the skin-electrode interface relative to the skin and room temperature (Fig. 7D1). 

Similarly, to account for such dynamic temperature variation due to natural cooling of the skin 

when exposed to the ambient temperature, we solved our FEM models first under steady-state 
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conditions and then used its solution as an initial condition for the time-dependent analysis. Any 

warming of sponges observed by subjects or operators touching the electrode surface would reflect 

passive heating from the body and it is unlikely that the difference between active and sham can 

be resolved, hence, not a confound to blinding. Our result does not address temperature changes 

inside the body (e.g. at the brain), temperature changes outside of the period evaluated (up to 5 

min post tDCS), microscopic changes (e.g. at sweat pores) or changes following abnormal tDCS 

dose (e.g. 100 mA), and repeated sessions. We speculate the flare response, already a well-known 

consequence of tDCS from inspection of skin erythema (Ezquerro et al., 2017; Guarienti et al., 

2015), along with the associated skin temperature change indicated here, may influence current 

flow patterns through the skin, and so indirectly tolerability (Khadka et al., 2017). For future 

research, this approach can be extended to a realistic head model or a microscopic level skin model. 
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Chapter 4: Role of complex skin tissue layers and ultrastructures in 

transdermal current flow during tDCS 

4.1. Outline 

This chapter describes the Aim 3 of the thesis (Technical Aim) where we developed a high-

resolution skin model to address the current flow pattern and relate whether the model aligns with 

experimental results of the skin reddening or skin heating. In Aim 1, the local current density 

predicted by the homogenous FEM model did not match the skin experimental reddening profile 

(main hypothesis was rejected). We then proposed an alternative hypothesis that experimental skin 

current density is indeed (relatively) uniform, and the homogenous model prediction is therefore 

incorrect. Prior simplistic (e.g. homogenous or two-layer) models lack relevant details of skin 

structures and thus did not directly align with experimental findings such as skin reddening. In 

order to address this possibility, in this Aim, we modeled the skin with multi-layers (epidermis, 

dermis, and fat), with or without additional ultra-structures (hair follicles, sweat glands, and blood 

vessels). 

4.2. Introduction  

4.2.1. Cutaneous current flow during transcranial electrical stimulation 

 

 Transcranial electrical stimulation, including tDCS is a noninvasive electrotherapeutic tool 

used to modulate brain functioning by delivering weak current to the brain via two electrodes 

positioned at the scalp/skin (Bikson et al., 2016; Nitsche et al., 2008). tDCS is well tolerated with 

common mild adverse events such as transient cutaneous sensations (tingling, itching, burning) 

and erythema (Antal et al., 2017; Aparício et al., 2016; Bikson et al., 2016; Fertonani et al., 2015; 

Paneri et al., 2016). However, if the established standard protocols are not strictly followed 
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(Woods et al., 2016), tDCS can produce significant skin irritation (Bikson et al., 2009; Poreisz et 

al., 2007; Shiozawa et al., 2013; Wang et al., 2015). Though these adverse events outline the need 

for a strict adherence to the stimulation protocols and an optimal electrode design for efficacy and 

safe cutaneous electrical stimulation (evaluated by the current density distribution under the 

electrode), the underlying electrical properties of the skin might not be totally affected by an 

external control of these stimulation parameters. The commonly reported adverse events such as 

erythema and burning sensation (if related to skin heating) are often related to current density 

under the electrode. Prior simplistic (e.g. homogeneous or two-layer) skin models predict higher 

current density at the electrode edges (A. Datta et al., 2009; Gomez-Tames et al., 2016; Miranda 

et al., 2006; Saturnino et al., 2015). However, these models lack relevant details of skin complex 

layers and realistic ultrastructures (sweat glands, hair follicles, and blood vessels) and thus did not 

align with the experimental findings such as skin reddening (Ezquerro et al., 2017) and skin heating 

(Khadka et al., 2018b). 

4.2.2. Experimental studies of skin electrical properties and lumped-parameter models  

The electrical properties of skin can be altered, including by the degree of hydration, pH, 

salinity, temperature, stimulation waveform type, perspiration, skin diseases, emotional state, and 

most importantly, the electrical stimulus intensity (current, voltage, power) (Kalia and Guy, 1995). 

Decreased skin resistance often correlates with an enhanced skin permeability (Björklund et al., 

2013). Given the sensitivity of skin electrical properties to an environment (e.g. room temperature) 

and preparation (e.g. cleaning) conditions along with the electrode design, it is important to 

interpret the experimental studies as specific to and in light of these limitations.  
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4.2.2.1  Skin impedance 

The influence of complex skin tissue layers including stratum corneum has been previously 

documented using skin stripping experiments. Successive stripping of the stratum corneum 

(keratinized superficial layer of epidermis) decreased skin resistivity by up to a factor of 300 

compared to the intact skin, which can be related to the removal of a resistive pathway (Lykken, 

1970; Tregear, 1966). In 1953, Mueller and colleagues studied the role of sweat duct in current 

flow using a multicontact electrode, and demonstrated that current is conducted through discrete 

channels in dry skin underneath a contact electrode (Mueller et al., 1953). In 1974, Saunders 

observed a discrete pattern of Ag (silver) deposition on a forearm after an electroplating 

experiment, confirming that during stimulation, current enters into the deeper skin tissue layers 

from the epidermis through a discrete sweat gland pathway (Systems et al., 1974).  

In 1955, Suchi confirmed that a wet skin or ducts filled with sweat has 10x lower 

impedance compared to a dry skin (Suchi, 1955). Martinsen et al., 1997  measured a galvanic skin 

response using electrical admittance meter on a blister skin and wart (pure stratum corneum (SC) 

without sweat ducts)), and concluded that the electrical properties of keratinized tissues like SC 

contribute to overall skin conductance, and below 10 Hz, skin demonstrate frequency independent 

electrical conductance (Martinsen et al., 1997). In 1976, Mason and Mackay demonstrated a 

gradual drop in skin impedance over time by placing an electrode over the skin (dry and wet skin 

(treated with tap water or conductive electrode paste)) and stimulating with a pulsed current ( 0.1 

- 1 mA, 4 Hz, 1 ms pulse width, and 2 ms interpulse width). In the dry skin, impedance significantly 

dropped (150 kΩ to 110 kΩ) with rapid fluctuations during the first minute of stimulation and then 

continued to drop asymptotically for 20 to 30 min. This drop phenomenon might have occurred 

due to a gradual hydration of SC from the sweat (equivalent to saline conductivity) build up 



www.manaraa.com

47 
 

underneath the electrode. In the tap water treated skin, impedance at the start of stimulation was 

lower (90 kΩ), but matched the dry skin impedance after 20 min (~ 65 kΩ), whereas for the skin 

pretreated with a conductive electrode paste, impedance was initially low (24 kΩ), but gradually 

increased to a maximum magnitude (~ 28 kΩ) and then descended below initial impedance (< 24 

kΩ ) after 1 min of stimulation (Mason and MacKay, 1976).  

4.2.2.2  Skin capacitance 

Several experiments have confirmed that skin capacitance lies in the SC. In 1966, Schwan 

demonstrated that at α relaxation frequencies (0.1 - 1000 Hz), the capacitance of the skin is 

predominantly due to the SC (Schwan, 1966). The capacity of stratum corneum has also been 

demonstrated using stripping experiments, where with every successive stripping, the skin 

capacitance dropped compared to its intact value- dropped lower than its intact value when all SC 

was removed (Edelberg, 1977; Lykken, 1970). However, the lumped circuit models have not yet 

captured this observation when considering SC/epidermis as a pure dielectric material sandwiched 

between electrode and dermis. If the model’s prediction is right based on the physics (parallel plate 

capacitor), the capacitance should increase with a decrease in SC thickness. In 1977, Edelberg 

experimentally measured the skin’s capacity using a corneometer and reported that the skin’s 

capacity lies in a range of 0.02 to 0.06 μF/cm2 (Edelberg, 1977), which is considered higher than 

the theoretically calculated value. For example, consider a 10 μm thick SC with dielectric constant 

of 2.5. Its theoretical capacitance will be 2 x 10-4 μF/cm2, smaller than the experimental values. 

Schwan et al., 1966 addressed this anomaly in skin capacitance using the concept of polarization 

capacitance- stored charge that appears around an electrode when placed in an electrolyte, thus 

forming an ionic capacitor (Schwan, 1966). Furthermore, Tregear in 1966 used a complex lump 

circuit model and addressed that the skin capacitance is contributed by individual cell membranes 
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(Tregear, 1966). For example, consider the epidermis has 200 cell layers and each cell have a 

capacitance of 5 μF/cm2. Each cell is a bilayer, and thus the total capacitance will be ~ 0.05 μF/cm2, 

which is close to the experimental measurement (0.02 - 0.06 μF/cm2). In 1996, Gabriel reported 

that the skin conductivity increases with frequency, and the skin capacitance decreases with 

frequency (Gabriel et al., 1996a). Franchimont and colleagues in 2015 characterized the skin 

capacitance using a skin capacitance mapping (SCM) system. Through an optic based imaging 

system, they photographed participants’ skin at rest and 10 min after physical exercise. They 

concluded that the calculated SCM score of the skin after physical exercise was higher (sweat 

production) than the skin at rest suggesting that sweat glands governs the skin capacitance 

(Pierard-Franchimont and Pierard, 2015).  

4.2.2.3 Skin nonlinearity 

Numerous prior studies (Grimnes, 1983; Mason and MacKay, 1976; Yamamoto and 

Yamamoto, 1981) demonstrated a nonlinear phenomenon (non-dielectric mechanism or a 

dielectric breakdown mechanism) as a time dependent impedance changes by applying voltage 

(600 to 1000 V), while limiting the current. Above a critical voltage, these studies reported 

significant skin non-linearity (for a 15 μm dry -excised SC sample) due to sudden dielectric 

breakdown of impedance (at ~ 450 V). However, for an intact living skin, this breakdown 

phenomenon was observed at significantly lower voltages than that of the excised SC. In 1977, 

Edelberg suggested that linear region for skin current density lies below 2 mA/cm2 (Edelberg, 

1977). Saunder and colleagues in 1974  studied the nonlinear voltage/current relationship using a 

5 μs pulse and hypothesized that during a brief time interval, the capacitive coupling to dermis 

might bypass the SC resistance and the nonlinear properties were exhibited by the skin (nonlinear 

breakdown occurring at 150 to 250 V) (Systems et al., 1974).  
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In 1934, Freiberger observed a nonlinear skin response to the waveform shape (sinusoidal 

at 50 Hz) as a distortion in the measured voltage for an injected current. Transient distortions (less 

than a minute) occurred as an instantaneous nonlinear response within the individual cycles, 

whereas the extensive nonlinearities were observed as a gradual decay in the impedance 

(Freiberger, 1934). In 1966, Schwan reported that skin impedance decreases with increasing 

frequency of the stimulating current. The capacitive properties of the skin predominantly account 

for its frequency dependent (0 to 2 kHz) nature (Schwan, 1966). Biegelmeier and colleagues in 

1980, demonstrated that skin impedance drops as much as ~ 750 Ω of its initial impedance at the 

highest frequency (Beigelmeier and Miksch ,1980).  

The extent of dielectric breakdown on a dry skin is also modulated by an electrode size. 

Freiberger in 1934 observed the breakdown (V ≥ 100 V) occurring within less than a second with 

a smaller electrode stimulation whereas with a larger electrode, the breakdown was above 200 V 

(Freiberger, 1934). Through a mockup parallel plate capacitor and a variable DC voltage source 

in series with the capacitor, Mason and MacKay in 1976 noticed a sharp increase in current 

recorded in the circuit at 600 V (DC) signaling a skin breakdown (onset of pain). Few small 

darkened punctures were observed following a prickling pain at the site of stimulation in dry skin, 

however there was no evidence of punctures when skin was pretreated with tap water or electrode 

paste (wet skin). This observation suggested current concentration at the discrete channels on the 

surface of skin, but not necessarily addressed the dielectric breakdown phenomenon. Grimnes et 

al., 1983 addressed dielectric breakdown mechanism of the human skin in vivo using a small 

electrode (0.018 mm2) in a low-admittance point (i.e. the dorsal side of the hand to avoid humidity 

build up under the electrode) and a positive stimulation potential. The dielectric breakdown 

progressed in a stepwise manner when a positive 600 V was applied through the series resistor 
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(150 MΩ) with an initial skin impedance of 6000 MΩ. At the higher potentials, the breakdown 

was immediate. With repeated square wave potential, the breakdown occurred in the second pulse 

and a new current level was attained after the next period of a zero current, suggesting the result 

of a permanent skin damage (Grimnes, 1983).   

4.2.3. Prior Skin FEM Models of Electrical Stimulation 

The FEM modelling serves as a powerful tool to predict current flow or study of any related 

electric properties of skin-electrode system. As an alternative to conventional lump circuit model 

or 1D electrical network simulation, the FEM method can yield higher accuracy, is less time 

consuming, and have better parameter control to emulate realistic conditions. The modeling of 

skin evolved over time, but the level of details and sophistication is still lacking in the existing 

FEM models. Prior skin models are simplistic (homogeneous or three layers) (Miranda et al., 2006; 

Sha et al., 2008; Abhishek Datta et al., 2009; Gomez-Tames et al., 2016), fail to capture the detailed 

anatomy of the complex tissue layers and ultrastructures (hair follicles, sweat glands, and blood 

vessels), and address their role in cutaneous current flow pattern. We expect these details to 

profoundly change the current flow pattern. The safety and tolerability of tDCS has been widely 

investigating by designing an optimal electrode or optimizing the waveform parameters to 

minimize cutaneous adverse events (Hahn et al., 2013; Khadka et al., 2015a, 2018a; Niranjan 

Khadka et al., 2019b; Minhas et al., 2010). However, without understanding the physiological 

electrical properties of the skin and its ultrastructures, the waveform or electrode optimization 

alone cannot ensure better stimulation outcome.  

Panescu and colleagues   modeled the first non-linear 2D skin FEM model for current flow 

prediction (Panescu et al., 1993). The nonlinearity was addressed by simulating dynamic skin 

conductivity (conductivity dependent upon the voltage), and by modelling 10 different nonlinear 
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sub-regions mimicking the mosaic skin structure (epidermis) of five different breakdown voltages. 

In 2006, Miranda and colleagues constructed a sphere model (representation of human head) to 

predict the spatial profile of the magnitude and direction of the current density in human head 

during tDCS. This model predicted highly non-uniform current density at the electrode/scalp 

interface (higher at the electrode perimeter) (Miranda et al., 2006). Sha et al., 2008 developed a 

2D FEM model of skin with stratum corneum, fat, muscles, and a single sweat duct to identify role 

of electrode on current distribution through the skin. The model predicted that peak current density 

was concentrated at the sweat gland, and high resistivity electrode produced lower peak current 

density (Sha et al., 2008). Datta and colleagues in 2009 demonstrated through an anatomical head 

model with simplified skin representation that tDCS induces negligible skin heating (A. Datta et 

al., 2009). In 2016, Gomez-Tames and colleagues developed a three layer skin model with non-

realistic hair follicles and sweat glands (geometric shapes of equal dimension) to investigate their 

effect in electrical and thermal analysis of tDCS. They did not include blood vessels into the model. 

The predicted electric field at the epidermis was uniform (edge effect was eliminated) when the 

hair follicle/sweat gland was assigned saline conductivity (conductive), whereas when the hair 

follicles/sweat gland was assigned hair conductivity (resistive than epidermis), the electric field 

around the electrode perimeter was not uniform (high electric field around the electrode perimeter) 

(Gomez-Tames et al., 2016).   

We previously developed a multi-layer skin model (in Aim 2) without ultrastructures to 

predict skin heating during tDCS (Khadka et al., 2018c). This model predicted a non-uniform 

temperature change across different locations under the sponge pad for few minutes after the onset 

of stimulation. However, near the end time of stimulation (t =20 min), the temperature change 

across different locations were uniform, suggesting that model match experimental distribution of 
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temperature only near the end of stimulation. The multi-layer skin model predicted ~ 0.38 OC 

temperature increase due to joule heat (the difference between peak temperature in the active case 

compared to no-stimulation (t=20 min) which is less than the experimental measurement of ~1.3 

OC (t=20 min)). We expect that adding skin ultrastructures such as hair follicles, sweat glands, 

and blood vessels will increase uniformity of temperature predicted at the surface of the skin during 

the entire stimulation period- consistent with the experimental measurement of skin temperature.  

In our prior study on tDCS-induced skin reddening profile, we hypothesized that skin 

reddening (erythema) profile matches local current density profile predicted by the skin model. 

However, the experimental skin reddening profile did not match the model predicted local current 

density profile (skin reddening was diffused, not concentrated around the electrode perimeter). 

Therefore, we proposed an alternative hypothesis that experimental skin current density is indeed 

(relatively) uniform, and the homogeneous/multi-layer skin prediction is incorrect. In order to 

address this possibility, we need to model multi-layer skin with additional ultra-structures. 

To this end, we will develop the first high-resolution anatomically realistic and detailed 

skin model accounting complex tissue layer, ultrastructures, and their physiological electrical 

properties, to predict current flow pattern through the skin layers and address whether cutaneous 

adverse events such as skin reddening or skin heating aligns with the experiment. 

4.3. Methods  

4.3.1. Computational Model and Solution Method 

a. Skin anatomy 

 Skin is a complex mosaic layer of tissues uniformly perforated by sweat ducts and hair 

follicles with different characteristics (Panescu et al., 1993). Epidermis, the outermost layer of the 
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skin, overlays the dermis and consists of predominantly keratin cells (dead cells). Epidermis 

thickness ranges from 50 - 150 μm and has a greater density of sweat glands (Kolarsick et al., 

2011; Yousef and Sharma, 2018). Sweat ducts are filled with sweat which has an electrical 

conductivity equivalent to 0.1 - 0.4 % saline solution (Suchi, 1955). The density of sweat glands 

varies across different skin surfaces (for example, on the forearm: 160 /cm2 ; on the palmer and 

planter surfaces of the hand and feet: ~ 370 /cm2) (Edelberg, 1977; Tregear, 1966).  The most 

superficial layer of the epidermis is stratum corneum (10-15 μm thickness) which is relatively a 

poor conductor of electricity (Yamamoto and Yamamoto, 1976). Dermis is the immediate layer 

following epidermis and contains living cells with greater blood vessels density that provide 

nutrition to the skin and maintain thermoregulation (Luna et al., 2015). The remaining tissue layer 

of the skin is subcutaneous and it consists of fat, adipose tissue, connective tissues, and muscles 

(Kolarsick et al., 2011; Yousef and Sharma, 2018). 

We modelled three variations of skin model namely basic (homogeneous), intermediate 

(multi-layer with or without ultrastructures), and advanced (high-resolution with realistic 

anatomy). The basic skin model, like the prior skin model (Khadka et al., 2018b; Kronberg and 

Bikson, 2012; Minhas et al., 2011; Miranda et al., 2006; Saturnino et al., 2015), is a homogeneous 

block representing combined mass of the skin tissues. The intermediate model, which is already 

developed in Aim 2, captures the common skin multi-layers (epidermis, dermis, and subcutaneous 

fat). We assessed the role of the skin ultrastructures by successively adding moderately-realistic 

(solid cylinders) hair follicles (diameter: 1 mm), sweat glands (diameter: 1 mm), and blood vessels 

(diameter: 10 mm) into the multi-layer skin model. Finally, based on the prediction from the multi-

layer skin with non-realistic ultrastructures, we developed a high-resolution anatomically realistic 

and detailed skin model. The anatomical shape (mosaic pattern, folding, and ridge patterns (mainly 
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in stratum corneum or epidermis)), tissue dimensions (thickness and diameter), and densities of 

hair follicles, sweat glands, and blood vessels were based on the prior cadaver study (Kolarsick et 

al., 2011; Yousef and Sharma, 2018) and imaging data (Hussain et al., 2017; Mogensen et al., 

2009; Olsen et al., 2015; Welzel, 2001). Specifically, the thickness of the epidermis, dermis, and 

fat were 0.1 mm, 2 mm, and 4 mm, respectively. The diameter of the hair follicles and sweat glands 

were 0.2 mm and 0.05 mm, with a spatial density of 1-2 per cm2 for the both ultrastructures. We 

only modeled the lumen of the blood vessels. The diameter of the blood vessel was 0.12 mm and 

the intercapillary distance was 50 µm. The location of hair follicles and sweat glands were 

allocated arbitrarily. 

b. Model construction and computational method 

All variations of the skin models were modeled as computer-aided design (CAD) files in 

SolidWorks (Dassault Systemes Americas Corp., MA, USA) and imported into Simpleware 

(Synopsys, CA, USA) to generate an adaptive tetrahedral mesh using a built-in voxel-based 

meshing algorithm. The models were refined to a finer mesh density until additional refinement 

produced less than 1% difference in voltage at the surface of the skin. The resulting models 

consisted of > 6 million, >28 million, and > 70 million tetrahedral elements for the homogeneous, 

multi-layer with or without moderately realistic ultrastructures, and the high-resolution skin 

models, respectively. The models were imported into COMSOL Multiphysics 5.1 (COMSOL Inc., 

MA, USA) to computationally solve the FEM under steady-state assumption. Respective isotropic 

electrical conductivities (including variations) were assigned to each model domain as: epidermis: 

0.465 S/m, 0.12 S/m, or 1.05x10-5 S/m; dermis: 0.23 S/m; and subcutaneous (fat): 2.0x10-4 S/m; 

hair follicles: 1.65x10-5 S/m; sweat gland: 1.4 S/m; and blood vessels: 0.7 S/m (A. Datta et al., 

2009; Duck, 1990; Gabriel et al., 1996a; Gomez-Tames et al., 2016; Khadka et al., 2018b; Pavšelj 
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et al., 2007; Torvi and Dale, 1994; Wagner et al., 2007; Wake et al., 2016; Werner and Buse, 1988; 

Wilson and Spence, 1988b; Yamamoto and Yamamoto, 1976). For the boundary conditions, a 

static inward normal current density (Jnorm) corresponding to 1 mA DC was applied through the 

anode sponge (σ = 1.4 S/m) positioned dorsal to the skin voxel while the ventral surface of the 

skin voxel was grounded, with the remaining external boundaries electrically insulated. Laplace 

equation (∇(σ∇V) = 0) for voltage (and in turn electric field and current density) was applied and 

solved as the field equations to determine the current densities at different skin layers and 

ultrastructures. The role of detailed anatomical structures in transcutaneous current flow was 

assessed based on the model predictions.  

4.4. Results 

4.4.1. Current flow in a homogeneous skin with varied conductivities  

To understand the role of physiological electrical properties of skin in current flow pattern, 

we first modeled a homogeneous skin model with varied electrical conductivities (Fig. 8A1). We 

considered three electrical conductivities of skin- 1) resistive (σ =1.05x10-5 S/m, Fig. 8A2a); 2) 

moderately resistive (σ = 0.12 S/m, Fig. 8A2b); and 3) conductive (σ = 0.465 S/m, Fig. 8A2c) (A. 

Datta et al., 2009; Kessler et al., 2013; Leite et al., 2018; Truong et al., 2013). The first two 

conductivity values were averaged based on prior literature values (Çetingül and Herman, 2010; 

Gomez-Tames et al., 2016; Hodson et al., 1989a; Hua et al., 1993; Khadka et al., 2018c; Panescu 

et al., 1994; Pavšelj et al., 2007; Sha et al., 2008; Torvi and Dale, 1994; Wilson and Spence, 

1988b). Models were constructed such that current density was insensitive to the modeled tissue 

exterior boundary size (see Methods). We quantified the distribution of current density profile 

diagonally from edge-to-edge at the surface of the skin by normalizing the local current density to 
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the peak current density (at the edges) (Fig. 8B1). Compared to our prior model prediction, the 

peak current density predicted by the moderately resistive skin and the resistive skin was ~ 8 % 

and ~ 11% lower (Fig. 8A2a, A2b, A2c). However, all models predicted higher current 

concentration around the edges.  

 

Figure 8: Homogenous skin model and current flow. (A) Illustration of homogeneous skin model with 

conventional tDCS electrode. (B1) Diagonal (edge-to-edge) current density normalized to the current 

density at the edge for 1.05x10-5 S/m, 0.12 S/m, and 0.465 S/m (color coded). Current density plots for the 

three variants of skin electrical conductivity (A2a, A2b, and A2c). Current density across the simulations 

were higher at the edges. 

4.4.2. Role of skin multi-layers in current flow 

 Simplistic homogenous skin model with varied conductivities did not address the current 

concentration at the electrode edges. Therefore, we used the multi-layer skin model from Aim 2 
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and predicted the role of multi-layers in current flow pattern through the skin (Fig. 9A1). We 

compared the model prediction by simulating two epidermis resistivities (resistive (σ =1.05x10-5 

S/m) and moderately resistive (σ = 0.12 S/m)), and standard dermis and fat conductivities (dermis: 

σ = 0.12 S/m; fat: σ = 2x10-4 S/m). The resistive epidermis (Fig. 9B1, B2, B3) and moderately 

resistive epidermis (Fig. 9C1, C2, C3) models predicted higher current density around the 

electrode perimeter in the epidermis compared to the center (~ 2x and ~ 6x), however, the 

magnitude of the peak current density was significantly lower than the homogeneous model (0.42 

A/m2 vs 4.46 A/m2 and 0.77 A/m2 vs 4.46 A/m2). In the dermis layer, the current density was still 

higher at the edges for both resistivity models, however at the fat layer, the current density edge 

effect was eliminated (Fig. 9A2, B2, B3, C2, C3). 
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Figure 9:  Multi-layer skin model and current flow. (A1) Illustration of a multi-layer skin model 

(epidermis, dermis, and fat). (B1, B2, B3) and (C1, C2, C3) represent predicted current density at the surface 

of epidermis, dermis, and fat for resistive and moderately resistive epidermis. (A2) shows normalized 

diagonal current density distribution. Compared to the homogeneous skin model, the peak current density 

at the epidermis was relatively lower in both variant of resistive epidermis. Current concentration was 

higher around the edges in epidermis and dermis, but in the fat layer, it was comparable. 

Furthermore, we conducted an exploratory sensitivity analysis in the multi-layer skin 

model using different combinations of electrical conductivities for the multi-layers to search for 

the best possible conductivities combination that results in a prediction of a uniform current density 



www.manaraa.com

59 
 

at the surface of the skin (epidermis). We simulated ~ 65 different combinations of electrical 

conductivities of epidermis, dermis, and fat, and 17 combinations resulted in a prediction of a 

uniform current density profile at the epidermis (Fig. 10). The normalized current density profile 

across different tissue layers were comparable in the 17 conductivity combinations. This sensitivity 

analysis concluded that increasing the epidermis resistivity and decreasing the dermis resistivity 

results in a uniform current density prediction at the surface of skin. 

 

Figure 10: Sensitivity analysis on electrical conductivities of multi-layers that result a uniform 

current density profile prediction at the skin surface. The 17 variations of conductivity combinations 

(out of 65) of multi-layer skin model resulted in a uniform current density at the epidermis.  
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4.4.3. Role of skin multi-layers and ultrastructures in current flow 

 We analyzed the role of hair follicles, sweat glands, and blood vessels in current flow by 

successively adding each ultrastructure into the multi-layer skin model. Skin ultrastructures were 

modeled as a solid cylinder with moderately-realistic dimensions (diameter of sweat gland and 

hair follicle: 1 mm, and blood vessels: 10 mm). In this and the remaining other analysis, we used 

the standard resistive epidermis (1.05x10-5 S/m) and standard dermis (0.12 S/m) and fat (2 x 10 -4 

S/m) conductivities. The current densities at the surface of epidermis, dermis, and fat, and across 

the ultrastructures were compared across the model variations.  

The addition of only hair follicles (Fig. 11D1, D2, D3) into the multi-layer skin model 

resulted in the prediction of higher current density at the edges of epidermis and dermis, but it was 

uniform at the fat. We also observed current concentration around the hair follicles (not across the 

hair follicles) because hair follicles act as a resistive pathway (σ = 1.6x10-5 S/m). The addition of 

sweat glands (σ =1.4 S/m) (Fig. 11E1, E2, E3) resulted in the prediction of peak current density 

around the sweat glands in both the epidermis and dermis. These current density hotspots were 

consistent (uniform) across the sweat glands, both near and far from the electrode edges. At the fat 

layer, the current density was uniform. Further addition of only blood vessels into the multi-layer 

skin model resulted in the prediction of higher current density around the edges in the epidermis 

and upper dermis. However, at the lower dermis and fat, current density was uniform across the 

blood vessels under the electrode, both near and far from the electrode edges. The normalized 

current density plots show diagonal distribution of current density (edge-to-edge). 
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Figure 11: Successive addition of non-realistic skin ultrastructures (hair follicles, sweat glands, and 

blood vessels) into the multi-layer skin model. (A1) Illustration of skin model with sweat glands, hair 

follicles, and blood vessels. (B1, B2, B3) shows normalized current density distribution at the surface of 

epidermis (σ = 1.05x10-5 S/m), dermis (σ = 0.12 S/m), and fat (σ = 2x10-4 S/m) for different model 

variations. (C1, C2, C3) shows current density plots for multi-layer skin model without ultrastructures. (D1, 
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D2, D3) represents current density prediction with the addition of only hair follicles, (E1, E2, E3) with the 

addition of only sweat glands, and (F1, F2, F3) with the addition of only blood vessels. Sweat glands and 

blood vessels provides conductive pathway for transcutaneous current flow to deeper skin layers, reflected 

by uniform current density across them. 

 4.4.4. Role of anatomically realistic and detailed skin multi-layers and ultrastructures in current 

flow 

 The multi-layer skin model with moderately-realistic ultrastructures resulted in the 

prediction of different current flow pattern (in some cases, higher current density across the sweat 

glands in the epidermis, and uniform current density across the blood vessels in the lower dermis 

and fat) compared to the multi-layer skin model, suggesting that ultrastructures have profound 

effect in cutaneous current flow. Therefore, based on these predictions, we developed the first 

high-resolution anatomically realistic and detailed skin model to assess how the realistic tissue 

layers and ultrastructures fundamentally change current flow pattern depending upon the 

parameters.  

We simulated the realistic skin model with four variations of electrical conductivities of 

the epidermis and dermis with the goal of predicting a uniform current density at the surface of the 

skin. With the moderately resistive epidermis (0.12 S/m) and dermis (0.23 S/m) conductivities, the 

predicted current density was higher at the edges in the epidermis, similar to the prediction of 

homogeneous model or intermediate model. The current concentration was still higher at the edges 

compared to the center in the dermis, however, in the fat, there was no current density edge effects 

(Fig. 12 B1). The resistive epidermis and 100x conductive dermis model predicted peak current 

density across the sweat glands in the epidermis (3.5 A/m2). The current density was still higher 

across the sweat glands in the dermis, however at the fat layer, current density profile was uniform 



www.manaraa.com

63 
 

(Fig. 12B2).  In the resistive epidermis and dermis (/100) model, the peak current density was 

across the sweat glands in the epidermis and dermis layer. In the fat layer, current density was 

localized at the blood vessels (Fig. 12B3). In the resistive epidermis and standard dermis 

conductivity model, the current density was higher across the sweat glands in the epidermis and 

dermis. In the fat layer, current density was mainly concentrated across the blood vessels (Fig. 

12B4). The normalized current density profiles at the epidermis was comparable for all the 

resistive epidermis simulation condition (Fig. 12C1) except for the conductive epidermis condition 

(Fig. 12B1). Note that the fluctuations in current density at the epidermis and dermis are due to 

the mosaic morphology of epidermis and dermis, and the presence of the sweat glands and blood 

vessels along the current density trajectory (current density is higher across sweat gland and blood 

vessel) (Fig. 12C1, C2). Overall, the results emphasize that complex tissue layers and 

ultrastructures of the skin can fundamentally change the current flow pattern depending upon the 

electrical conductivities. 
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Figure 12: High-resolution anatomically realistic and detailed skin model and current flow 

prediction. (A1) Illustration of the realistic skin model with detailed skin layers (with mosaic morphology), 

hair follicles, sweat glands, and blood vessels. (A2) current flow from electrode to deeper tissues with inset 

showing current density streamlines through the blood vessels and the sweat glands. (B1, B2, B3, B4) show 

predicted current density at the epidermis, dermis, and fat under varied epidermis and dermis electrical 

properties. B2, B3, and B4 modeling conditions produced a uniform current density at the surface of 

epidermis compared to the B1 condition. The sweat gland and blood vessels provide a conductive pathway 
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for the current flow to deeper tissues (current density hotspot around sweat gland and blood vessels). (C1, 

C2, C3) shows normalized current density profile at the epidermis, dermis, and fat, respectively. Noticeable 

fluctuations in current density at the epidermis and dermis emphasizes the influence of skin anatomy and 

ultrastructures in skin current flow pattern. 

4.5. Discussion 

 Prior studies, including through computational modeling studies have well established that 

during electrical stimulation, current distribution is not uniform at the skin surface, with high 

current density at the electrode edges (Miranda et al., 2006; Opitz et al., 2015). Higher current 

density at the electrode edges is generally considered undesirable for safety reasons (especially for 

implanted electrodes (Merrill et al., 2005); and may increase sensation during transdermal 

electrical stimulation. Note that any subsequent current dispersion across deeper tissues results in 

no evidence of electrode-edge related current concentrations at the brain during transcranial 

electrical stimulation (Datta et al., 2009; Miranda et al., 2006; Datta et al., 2009). Prior efforts on 

strategies for normalizing current distribution at the electrode-skin interface (skin) have focused 

on electrode design (shape and/material)(Gilad et al., 2007; Krasteva and Papazov, 2002; Minhas 

et al., 2010). 

 Here, we modeled three variants of skin models- 1) homogeneous (Basic); 2) multi-layer 

(Intermedia); and 3) high-resolution (Advanced) to analyze the role of skin multi-layers and 

ultrastructures in uniformly dispersing current through the skin. Consistent with the previous 

modeling studies, the rectangular electrode produced higher electrode edges in the homogeneous 

skin model- moderately lower current concentration with the resistive skin conductivity compared 

to our standard skin conductivity (Fig. 8). We further implemented the multi-layer skin model 

previously developed in Aim 2 to predict the current flow pattern across the tissue layers. The 
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addition of multi-layers significantly lowered the current concentration at the electrode-edges, 

lower for the resistive epidermis (1.05 x10-5 S/m) than the moderately resistive epidermis (0.12 

S/m) (Fig. 9). A broader parametric sweep through different conductivities combination concluded 

that resistive epidermis and conductive dermis results in a uniform current distribution at the 

electrode-skin interface. Inhomogeneity and anisotropy within the skin (such as sweat glands, hair 

follicles) plays an important role in current dispersion from the skin surface to deeper tissues 

(Gomez-Tames et al., 2016; Piérard-Franchimont et al., 2016; Sha et al., 2008; Suchi, 1955). We 

modelled the multi-layer skin (resistive epidermis) with the non-realistic (cylindrical) hair follicle, 

sweat gland, and blood vessels to assess their role in current distribution. The model prediction 

suggested that sweat glands and blood vessels act as conductive pathway for current dispersion to 

deeper tissues and the hot spots of current density around the sweat glands and blood vessels are 

the region of susceptibility but not the electrode edges. Finally, we developed the first high-

resolution anatomically detailed skin model incorporating mosaic epidermis morphology, realistic 

vasculature, hair follicles, and sweat glands, which predicted that depending upon parameters and 

detailed anatomy, the current flow through the skin is significantly altered. 

Prior simplistic models lack relevant details of skin structures and thus they did not align 

with experimental findings such as skin reddening and skin heating. Adding details resulted in the 

predictions of current flow patterns that are consistent with the experimental observations of skin 

reddening and heating (uniform profile under the sponge pad). The addition of sweat glands 

removes current concentration at the electrode edges and the addition of blood vessels uniformly 

distributes current density across the modeled vasculature under the electrode. We considered 

range of model details and parameters and could not conclude the “ideal” model parameter. 

However, in the real skin, the ultrastructure and the multilayers are present and incorporating these 
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details will address the experimental observations of reddening (uniform current flow dilates blood 

vessels and causes vascular flare or blood flow related skin reddening (Dusch et al., 2009, 2007)). 

Since the addition of sweat glands and blood vessels into the multi-layer skin model eliminated or 

reduced current density edge effect, we expect that a bioheat model of the realistic skin model 

would increase the uniformity of predicted temperature at the surface of the skin. Moreover, these 

ultrastructures may increase joule heat by producing local hotspots of current to reconcile the 

predicted temperature with the experimental measurement of temperature rise (Khadka et al., 

2018c). 

 In conclusion, it is important to emphasize that skin needs to be empirically modeled to 

address the current flow pattern through the skin and explain the experimental findings of burns, 

skin reddening, or cutaneous sensations such as burning sensation. Though prior efforts outline 

the need to optimize and refine current technology and protocols in tDCS to produce a uniform 

current distribution, without appropriately modeling the skin, these technologies cannot alone 

address current flow and rapid prototype testing. 
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Appendix 1: Methods for Specific Electrode Resistance Measurement 

during Transcranial Direct Current Stimulation 

1.1. Outline 

  This Appendix describes a novel method to isolate individual electrode resistance 

during tDCS by using a super-position of direct current with a test-signal (low-intensity and low 

frequency sinusoids with electrode-specific frequencies) and a sentinel electrode (not used for 

DC). A version of this study has been published (Khadka et al., 2015a). We concluded that a 

sentinel electrode is required to isolate an electrode resistance in a two-electrode or multi-electrode 

system where cross talk aggravated with electrode proximity and resistance, mismatches in multi-

electrode resistance tracking and could be corrected using the proposed approaches, and a test 

signal can predict DC electrode resistance since unique test frequencies can be used at each tDCS 

electrode for any number of stimulating channels. 

1.2. Introduction 

 Transcranial Direct Current Stimulation (tDCS) is investigated to treat a range of 

neuropsychiatric disorders, for rehabilitation, and for altering cognitive performance (Brunoni et 

al., 2012; Nitsche et al., 2008).  When standard protocols are followed, tDCS is well tolerated with 

common adverse events limited to transient skin sensation and erythema. When established 

protocols are not followed, tDCS can produce significant skin irritation.  Given that skin-sensation 

(Dundas et al., 2007b; Minhas et al., 2011; Turi et al., 2014) and skin irritation are the primary 

risks of tDCS (Poreisz et al., 2007; Shiozawa et al., 2013), proper electrode preparation and then 

monitoring of electrode resistance are important to ensure the stimulation is reproducible and well 

tolerated (as well as sham reliability in clinical trials).  The monitoring of electrode resistance 

before and during tDCS is considered important for tolerability and safety (DaSilva et al., 2011; 
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Merrill et al., 2005; Nitsche et al., 2008), where an unusually high electrode resistance is indicative 

of undesired electrochemical changes (Minhas et al., 2010) or poor skin contact conditions.  Yet, 

conventional methods to monitor electrode resistance are flawed conceptually and technically.  

  “Electrode resistance” during tDCS in fact reflects an aggregate metric of conditions in the 

electrodes (e.g. over-potential; (Merrill et al., 2005)) and skin (see discussion for terminology).  

Resistance is conventionally measured between two electrodes by applying a test current before 

tDCS or measuring voltage during tDCS and dividing the voltage by the current (Hahn et al., 

2013). While convenient, this method does not distinguish the contribution from each electrode. 

Non-linear tissue impedance and tissue generated potentials, themselves a function of the applied 

current, also confound measurement. Moreover, when multiple electrodes are used (as in HD-

tDCS) the problem is aggravated with cross talk across electrodes making concurrent resistance 

monitoring unreliable.   Here we present the first approach that allows measurement of individual 

electrode resistance using any number of electrodes or electrode configurations. 

The need to combine electrode resistance measurement with current flow for 

neuromodulation raises special concerns not previously addressed. For example, electrode 

resistance measurement during EEG is achieved by testing individual pairs of electrodes 

sequentially (Ferree et al., 2001; Kappenman and Luck, 2010), such that at any given instant only 

one pair is activated.  While this approach could be applied prior to tDCS, during tDCS all 

electrodes need to be active for neuromodulation.  A potential solution is a super-position of direct 

current stimulation with a test-signal; but, to be meaningful, such a test signal should provide 

information related to DC-resistance of the electrodes.  Similarly, in Electrode-Impedance-

Tomography (EIT refer to measuring tissue resistance using electrodes, not measuring electrode 

resistance), electrode pairs can be tested sequentially and independently, and care is taken to avoid 
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changing or measuring the resistance of electrodes (Gaggero et al., 2012; Grychtol and Adler, 

2013; Khan et al., 2013). Continuous direct current is avoided in all these applications because it 

generates changes in electrode impedance, and it precludes time or frequency multiplexing.  Thus, 

methods for using a low-intensity test signal in combination with direct current stimulation remains 

to be proposed and tested.  Here we validated methodology for monitoring of individual electrode 

resistance during two or multi-channel tDCS by using a low-intensity low-frequency test signal 

(sinusoids) with electrode-specific frequencies and an additional sentinel electrode that is not used 

for direct current stimulation. 

1.3. Materials and Methods 

1.3.1. Participants 

Six healthy volunteers (all male; age range 20-30 years; mean age 22.8 ± 2.4) participated 

in this study. The experiment was conducted after receiving approval from the CCNY local Ethics 

Committee and all participants gave written informed consent before participating in the 

experiment. They were seated in a relaxed position with their stimulated arm on a bench top. 

1.3.2. Stimulation 

The main input signal superimposed a direct current source (2 mA) with an alternating 

current source (38 µA and 76 µA pk-pk at 1 Hz, 10 Hz, and 100 Hz) applied on the subjects’ arm 

for 4 min. We aimed to establish a relationship between the DC and the test signal (AC) to predict 

electrode resistance (as defined in discussion). A sentinel (none DC current carrying) electrode 

was used to isolate electrode impedance and eliminate tissue resistance contamination from one or 

more sources. A trapezoidal current input composed of a 30 s test signal (AC, 38 µA or 76 µA) 

followed by a DC ramp up to 2 mA (30 s duration), a 2 min stimulation phase composed of 

superimposed AC and DC signal (main input signal), a DC ramp down (30 s), and a post 
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stimulation test signal (AC, 30 s) was applied through tin electrodes (EASYCAP, Herrsching, 

Germany) on the subjects’ forearm. The LabVIEW (National Instruments, TX, USA) generated 

voltage signal output from a NI 9263 cDAQ Module (National Instruments (NI), TX, USA) was 

converted to a constant current through an analog current controller (A-M Systems Analog 

Stimulus Isolator, WA, USA). 

1.3.3. Subject experimental procedures 

A combined DC and test-signal was used to stimulate forearms of the six healthy 

participants under different current amplitudes (38 µA and 76 µA) and frequencies (1 Hz, 10 Hz, 

and 100 Hz). Prior to simulation, the skin was cleaned with dilute saline. Rubber straps and 

electrode holders from Soterix Medical Inc. (NY, USA) were secured on the forearm (10.2 cm 

apart) and uniformly filled with a conductive gel (Signa, NJ, USA). The anode and cathode 

electrodes were positioned proximal and distal to the hand, respectively, and connected to the 

analog current isolator/stimulator. Voltage was recorded across the stimulator. A manual switch 

was placed in series with the circuit to avoid transient current spikes and ensure that the skin 

impedance doesn’t change until the stimulation session begins. 

1.3.4. In vitro electrode testing  

While conducting in vitro electrodes testing on parafilm sheets, the electrodes were 

positioned on top of conductive gel (Signa). In case of Type A error and method of correction 

using a sentinel electrode, 2 mA DC (Source 1 (S1)) was passed through anode and cathode and a 

test signal (38 µA pk-pk at 10 Hz as Source 2 (S2)) was passed through the anode (shared) and 

sentinel. Voltage was recorded across sentinel and shared anode. In Type B error and method for 

correction using sinusoidal test signal, first source (S1) with test signal (38 µA at 10 Hz) 

superimposed on top of DC ( 0.5 mA) energized anode1 and cathode1 and a DC current (second 
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source (S2)) of 2 mA was passed through anode 2 and cathode 2. Voltage across anode 1 and 

cathode 1 was acquired for this approach.  

1.3.5. Data recording and Impedance analysis 

Unless otherwise stated, voltage data from stimulation were acquired using NI 9229; an 

analog input module and Lab VIEW. In experiment where independent current sources were used, 

data were collected using multi-meters. Acquired voltage signal (Fig. 15A) was first isolated into 

test signal (sinusoid) voltage using high pass filter (Fig. 15B) and DC signal using low pass filter 

(Fig. 15E). Specific cut-off frequencies were selected for all stimulation frequencies. Test signal 

was converted into RMS (root mean squared) voltage (Fig. 15C) and divided by the RMS current 

to calculate the AC-impedance (Fig. 15D). DC-resistance was determined by dividing DC voltage 

component by the DC current (Fig. 15F).  

1.3.6. Pain analysis 

Subjective pain was acceded by asking every participant to rate their pain level during 

every 30 s of stimulation phase excluding pre and post-stimulation. Participants rated their skin 

sensation in the scale of 1-10; visual analogue scale (VAS) (Poreisz et al., 2007). 

1.3.7. Statistical analysis 

The data were evaluated using MATLAB (MA, USA). Two-way repeated measures 

ANOVAs (analysis of variance) were used for each output measures (pain sensation, average 

voltage and DC-resistance to AC- impedance ratio) with current intensities and frequencies as 

factors to analyze interactions between the two factors and to account testing within each 

participant. Critical value < 0.05 was accepted as a statistical difference between groups. 

1.4. Results 
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 In the first part of results, we define the problem - which is unrecognized in current tDCS 

and HD-tDCS - and our proposed solution. This also allows us to identify assumptions of our 

solution. The second part tests those assumptions experimentally. The third part illustrates the 

solution through experiment. 

 

Figure 13. Lumped circuit analysis of transcranial Direct Current Stimulation (tDCS) using two 

electrodes with an additional sentinel electrode that does not carry direct current. (A) Illustrates our 

assumption of using a test signal (test) and a sentinel (Rref) to predict DC voltage. This example includes 

two sources, S1 (DC) and a test AC signal, two active electrodes used for DC simulation: RE1 and RE2, 

and a sentinel electrode (Rref). We assume that the AC voltage detected across RE1 and Rref can predict 

the DC voltage (hence DC-resistance) of RE1. (B) Illustrates the need for methodology to detect single 

electrode resistance changes. The schematic has two electrodes (RE1 & RE2) and a DC source (S1). The 

resulting voltage drop across these electrodes is function of tissue impedance (Rt) and the resistance of both 

electrodes. (C) Presents a solution for the problem indicated in (B) based on the assumptions outlined in A, 

where a sentinel electrode (Rref) is used to selectively monitor an stimulating electrode (in this case RE1) 

of interest. In this case a single source produced a combined direct current with superimposed test AC 

signal. And sentinel electrode (not used for DC stimulation) is required, but not additional current sources. 

Part 1:  Problem Definition, Solution, and Assumptions to be tested 
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a. The non-triviality of resistance measurement during two electrode tDCS 

Fig. 13B is a simplified lumped parameter model of electrode resistance during tDCS.  The 

complete “cell” across which net resistance can be measured (at the output terminals of the 

stimulator) includes two electrodes and tissue.  The stimulator (current source, S1) generates 

current (I1) across the cell and the resulting voltage is measured (voltmeter) as indicative of 

electrode resistance. The presence of multiple elements in itself makes it impossible to determine 

the contributing element to a resistance increase (e.g. is electrode 1, electrode 2, and/or tissue) as 

shown in the following equation. 

𝑉𝑡 = 𝐼1 (𝑅𝐸1 + 𝑅𝑡 + 𝑅𝐸2) -------- (i) 

where the total voltage (Vt) measured across two active electrodes (RE1 & RE2) is found assuming 

a linear relationship between current I1 and sum of electrodes resistance and tissue impedance 

(Rt). The matter is further complicated by the complex non-linear impedance of each electrode 

reflecting the electrochemistry as the electrode surface before and during direct current stimulation 

(Minhas et al., 2010).  For illustration, we simplify this electrode resistance (as defined in 

discussion) as a voltage source, reflecting electrode over-potential, and a non-linear resistance, 

reflecting how current application produces a further voltage across the electrode.  Tissues (skin, 

bone, fat, brain, etc.) also offer complex impedances (current and time dependent) and generate 

potentials, but for convenience are also considered a resistance.  Equation (i) is thus not strictly 

valid. Simplistically, the “resistance” reported during tDCS (see discussion) is the measured 

voltage (Vt) divided by the applied current (I1).  But the voltage measured across the cell, before 

or during direct current stimulation is not a trivial function of “electrode resistance”.  For example, 

the electrode over-potential contributes to Vt and the impedance is itself a function of the amount 

of current applied (Hahn et al., 2013).  Our purpose here is to simply develop a measure to resolve 
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the voltage across a single resistance (e.g. the voltage across RE1) during two and multi-electrode 

tDCS. 

b. Use of test signal and sentinel electrode 

Fig. 13 C illustrates a schematic for our basic solution.  The use of a third “sentinel” 

electrode (Rref) that is not involved in stimulation is common in electrochemical analysis (Michael 

and Borland, 2007).  The potential measured between any given active electrode and the sentinel 

electrode, reflects only voltage drop across that active electrode and tissue voltage contribution as 

shown in the equation below:  

𝑉𝑡 = (𝐼1 + 𝐼𝑡𝑒𝑠𝑡) (
𝑅𝑡1.𝑅𝑡2

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3)
+ 𝑅𝐸1)………………… (ii) 

where Rt1, Rt2, and Rt3 are tissue resistances and Vt reflect the voltage drop across RE1.  This 

step in itself enhances the fidelity of electrode resistance measurement by isolating a single 

electrode.  If RE1 is significantly larger than the tissue impedances, then Vt is assumed to largely 

reflect the impedance of RE1 (𝑉𝑡 = (𝐼1 + 𝐼𝑡𝑒𝑠𝑡)𝑅𝐸1). More generally, assuming linear relation, 

equation (ii) cannot be applied.   

Up to this point we have considered application of only direct current and measurement of 

the resulting voltage.  We proposed the addition of a further current (“Itest” in Fig. 13 C), a low-

intensity and frequency test signal that generates a characteristic voltage across the active 

electrode, which in turn will be a sinusoid component in Vt superimposed on the voltage generated 

by the direct current stimulation.   The central assumption of this report is that this sinusoidal 

voltage is representative in magnitude of the voltage generated across RE1 by the passage of direct 

current.   This assumption is trivial where one assumes Ohmic current flow.  But given the 
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complexity of the electrode interface, including electrode over-potential, this assumption requires 

validation.    

 

Figure 14. Lumped circuit analysis of transcranial Direct Current Stimulation (tDCS) using four or 

three DC stimulating electrodes with solutions for electrode resistance tracking solutions using either 
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an additional sentinel electrode or additional current sources. (A) Representation of a four-electrode 

arrangement problem which is reduced to a simpler form as shown in (B). (C) First solution for problem in 

(B) using a sentinel electrode and a test signal superimposed on an existing current source. (D) Second 

proposed solution with using an additional test current sources but no additional electrodes. (E) 

Representation of a stimulation montage using three electrodes when there are two independent electrodes 

(RE1 &RE2) and a common shared electrode (RE3). (F) Illustration of the first solution of problem situation 

in (E) where a test signal produced by additional current sources are passed across two active electrodes to 

resolve specific DC-electrode resistance. (G) Another solution of the same problem where a sentinel is used 

without requiring additional current sources. For all of the cases, confound of tissue resistance is also shown 

(see text). 

Fig. 13 A rephrases the lump-parameter model to clarity this assumption.  Passage of DC 

current (I1) by S1 produces complex over-potential and impedance changes in electrode RE1 and 

a direct voltage across RE1.  This is the “DC impedance” of the electrode, which is the so-called 

“resistance” of interest in tDCS.  Will a sinusoidal current simultaneously passed across RE1, 

produce a sinusoidal voltage that is related to this direct voltage? At face value, the addition of a 

test signal does not provide more information in a two electrode system, however if this test signal 

predicts DC resistance of an electrode, it can be leveraged during multi-electrode tDCS, as 

explained next. 

In exploring sinusoid test-signal tracking of DC resistance, we will test a range of frequencies 

and intensities.  And we further will evaluate if the passage of sinusoidal current itself does not 

change the electrical performance of the electrode or skin impedance, as well as that the subject 

sensation is not a function of test signal intensity or frequency.  

c. Further cross talk during resistance measurements in multi-electrode tDCS 
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Here, we represented two independent current sources (S1 and S2) though this analysis can 

be extended to any number of electrodes and sources (Fig. 14).   In a four electrode example, each 

current source is connected to distinct two stimulating electrode (RE1, RE2 to S1 & RE3, RE4 to 

S2; Fig. 14A, 2B, 2C, & 2D) while in the three electrode example (RE1, RE2, RE3), one electrode 

(RE3) is shared by the stimulation sources (Fig. 14E, 2F, & 2G).  Tissue impedance is again 

represented as multiple lumped parameters for the purpose of illustration (such as Rt, Rt1, Rt2, 

Rt3, Rt4, etc.).  Voltage measurement can be obtained across the current sources (the voltage being 

produced by the current source accessible at the output leads) or using additional voltmeters and a 

sentinel electrode (Rref).   For each electrode, the electrode potential and non-linear impedance 

are represented by a single lumped parameter, but we emphasize again these quantities are a 

complex function of time and current passage.   

For two independent sources that do not share electrodes (Fig. 14A), the voltage measured 

across source S1, is also influenced by the current source S2 and a function of specific tissues 

impedances. Assuming linearity the voltage across S1 is: 

𝑉𝑡 = 𝐼1 (𝑅𝐸1 +
𝑅𝑡1 (𝑅𝑡2+𝑅𝑡3+𝑅𝑡4)

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3+𝑅𝑡4)
+ 𝑅𝐸2) +  𝐼2 (

𝑅𝑡3.𝑅𝑡1

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3+𝑅𝑡4)
)                      (iii) 

The degree of cross-talk from S2 to the voltage recording across S1 is a function of tissue 

resistivities.  Depending on polarity, the voltage across S2 may be higher or lower.  However, even 

for tissue resistivities leading to relatively low coupling (e.g. Rt3 << Rt2), a large S2 source (e.g. 

2 mA) may contribute significantly to the voltage across a smaller S1 source (e.g. 0.1 mA).  By 

further extension, for a multiple channel system (e.g. 10 sources with 0.2 mA) the voltage 

measured at any given source may be significantly contaminated by tissue coupling across other 

sources making “electrode impedance” calculation unreliable.   
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Figure 15. Representative analysis for combined DC resistance and AC-impedance measurement. 

(A) Voltage signal measured across the electrodes. 2 mA DC current is applied for2 min with an additional 

ramp up and ramp down across a subject’s forearm. A 10 Hz, 38mA test sinusoidal current (pk-pk) is also 

applied prior, during (superimposed on the DC), and post-stimulation. (B) High pass filtered signal 

revealing the test signal: AC component. (C) RMS voltage of the AC component. (D) Calculated AC 

impedance. (E) Low pass (DC component) voltage filtered signal. (F) Calculated DC resistance. 

 



www.manaraa.com

80 
 

To illustrate our solution, a further simplified four stimulating electrode lumped circuit is 

shown in Fig. 14B which is governed by the following equation assuming linearity: 

𝑉𝑡 =  𝐼1 (𝑅𝐸1 + 𝑅𝐸2 + 𝑅𝑡) +  𝐼2 (𝑅𝑡)                                                                          (iv) 

where DC current (I2) from S2, and by extension additional sources, would confound the voltage 

(Vt) reading across S1.   

For the four-electrode example, two solutions that both remove this electrode-cross talk 

and furthermore allow isolation of single-electrode impedance are shown. The first solution using 

a test signal and sentinel electrode is shown in Fig. 14C, where the voltmeter (tuned to the 

frequency of test1) will detect the sinusoid test1, which under the assumptions explained above 

(illustrated in Fig. 13 A), would predict the DC electrode impedance of RE1. The total voltage 

across S1 assuming linearity is given by: 

 𝑉𝑡 = (𝐼1 + 𝐼𝑡𝑒𝑠𝑡1)(𝑅𝐸1 + 𝑅𝑡) + (𝐼2 + 𝐼𝑡𝑒𝑠𝑡2) 𝑅𝑡                                                                 (v) 

But considering only the test frequency, the contributing voltage will be: 

𝑉𝑡 (𝑡𝑒𝑠𝑡) =  𝐼𝑡𝑒𝑠𝑡1 (𝑅𝐸1 + 𝑅𝑡) + 𝐼𝑡𝑒𝑠𝑡2(𝑅𝑡)                                                                          (vi) 

Here, assuming RE1>>Rt, and our overall assumption, provide a measure of single 

electrode impedance. A similar approach (not shown) can be used to determine the DC electrode 

resistance of RE3.  A test sinusoid signal, test2, can be applied across RE2 and RE3 but with a 

distinct frequency as test1, such that there is no cross talk across these test signals.  The DC 

electrode impedance of RE3 and RE4 can be measured using a voltmeter across RE3 and RE4 or 

Rref, where that voltmeter is tuned to the frequency of test2. Some powerful analysis can be 

obtained from this solution: 1) only one additional electrode is needed (Rref); 2) no additional 

current sources are needed if a single current source can produce both DC and test signals; 3) as 

long as Rref does not fail, the system is robust to the failure of any given electrode.  
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For the four-electrode case, the second solution (Fig. 14D) does not involve the use of a 

sentinel electrode (no Rref electrode).  Here, two additional current sources (test3, and test 4) 

generate test signals of unique frequencies, with associated voltmeters.  Two test signals are also 

provided with the DC sources (test1 and test 2).  A total of four voltmeters (four equations) and 

four electrodes (four unknowns) provide a substrate for solving for the impedance of each electrode 

where assuming linearity, the voltage across the S1 voltmeter is given by: 

𝑉𝑡 =  (𝐼1 + 𝐼𝑡𝑒𝑠𝑡1)(𝑅𝐸1 + 𝑅𝐸2 + 𝑅𝑡) +  (𝐼2 + 𝐼𝑡𝑒𝑠𝑡2)𝑅𝑡 +  𝑡𝑒𝑠𝑡3 (𝑅𝐸1)                 (vii) 

A similar equation can be provided for each voltmeter and, after removing all tissue 

impendences under the assumption they are smaller than electrode impendences, all solves 

simultaneously to calculate the impedance of each electrode as: 

𝑉𝑡 =  (𝐼1 + 𝐼𝑡𝑒𝑠𝑡1)(𝑅𝐸1 + 𝑅𝐸2) +  𝑡𝑒𝑠𝑡3 (𝑅𝐸1)                                                              (viii) 

Note that in this solution: 1) no additional electrodes are needed but additional current sources; 2) 

if any electrode fails completely (source open) it may not be possible to obtain a solution for any 

of the electrode impedances.  The underlying assumption for test signal predicting DC-resistance 

is still required. 

Finally, we considered the case of two current sources (S1 and S2) and three stimulating 

electrodes (RE1, RE2, RE3) such that one stimulating electrode (RE3) is shared by the two 

current sources (Fig. 14E).  When a stimulating electrode is shared by two sources, two 

measurements (two voltages) and three key unknowns (three electrode impedances) arise and 

thus do not allow identification of faulty electrode responsible for any increase in resistance. 

Assuming linearity, the voltage across S1 is given by: 

 

𝑉𝑡 = 𝐼1 [𝑅𝑡2
𝑅𝑡1+𝑅𝑡3

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3)
+ 𝑅𝐸1 + 𝑅𝐸3 + 𝑅𝑡4] +  𝐼2 (

𝑅𝑡2.𝑅𝑡3

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3)
+ 𝑅𝐸3 + 𝑅𝑡4)         (ix) 
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Again, if our assumption of electrode resistance being greater than that of tissue 

impedances is supported, this equation can be further reduced (assuming linearity) to: 

𝑉𝑡 =  𝐼1 (𝑅𝐸1 + 𝑅𝐸3) +  𝐼2 (𝑅𝐸3)                                                                                                         (x) 

For this case, two solutions are illustrated with a sentinel electrode (Fig. 14G) and without a 

sentinel but with an extra current source (Fig. 14F).  As with the four-electrode case, both solutions 

allow calculation of individual electrode resistance, but for the solution without a sentinel 

electrode, an additional test current sources are needed and must be connected across novel 

combinations of electrodes.  For the first solution with the sentinel, the voltmeter across S1 will 

detect (assuming linearity): 

𝑉𝑡 = (𝐼1 + 𝐼𝑡𝑒𝑠𝑡1) [
𝑅𝑡2(𝑅𝑡1+𝑅𝑡3)

𝑅𝑡1+𝑅𝑡2+𝑅𝑡3
+ 𝑅𝐸1] + (𝐼2 + 𝐼𝑡𝑒𝑠𝑡2) (

𝑅𝑡2.𝑅𝑡3

𝑅𝑡1+𝑅𝑡2+𝑅𝑡3
)                                 

(xi) 

If one assumes RE1 is greater than any tissue resistance, and consider only the test1 

frequency, this reduces to 

𝑉𝑡 (𝑡𝑒𝑠𝑡) = 𝐼𝑡𝑒𝑠𝑡1(𝑅𝐸1)                                                 (xii) 

For the second solution to the three-electrode case without a sentinel, the S1 voltmeter will 

detect: 

𝑉𝑡 = (𝐼1 + 𝐼𝑡𝑒𝑠𝑡1) [
𝑅𝑡2(𝑅𝑡1+𝑅𝑡3)

(𝑅𝑡1+𝑅𝑡2+𝑅𝑡3)
+ 𝑅𝐸1 + 𝑅𝐸3 + 𝑅𝑡4] + (𝐼2 + 𝐼𝑡𝑒𝑠𝑡2) (

𝑅𝑡2.𝑅𝑡3

𝑅𝑡1+𝑅𝑡2+𝑅𝑡3
+

𝑅𝐸3 + 𝑅𝑡4) +  𝑡𝑒𝑠𝑡(𝑅𝐸1)                                   (xiii)                                                                                                                                                             

A similar equation can be provided for each voltmeter and, after removing all tissue 

resistance under the assumption they are smaller than electrode resistance, all can be solved 

simultaneously. 
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Part 2: Testing of assumptions, and identification of effective test signals 

This section aims at testing the underlying assumptions of the proposed solution (not 

illustrating its application per se which is left for Part 3).  The core assumption to be tested is the 

tracking of DC-resistance by the AC test signals; several intensities and frequencies are compared.  

Secondary assumptions include that the selected signals do not confound the application or 

tolerability of tDCS as indicated by average voltage and subjective pain (Fig. 16). Experiments 

were conducted on in a parafilm sheet (gel base) and on the forearms of subjects. All participants 

tolerated the stimulation hence none of the experimental sessions were interrupted.  

a. Pain analysis during Stimulation 

A two-way repeated measures ANOVA of current intensities (38 µA & 76 µA) and 

frequencies (1 Hz, 10 Hz, and 100 Hz) during stimulation was conducted. The main effect of 

current intensities and frequencies on pain sensation was not significant; F (1, 5) =2.8, p=0.16 & 

F (2, 10) =3.3, p=0.08 as shown in Fig. 16A. The interaction between these two factors was not 

significant, F (2, 10) =0.16, p=0.86. 

b. Average voltage during Stimulation 

Average voltage was independent of current intensities and stimulation frequencies, F (1, 

5) =0.05, p=0.83 & F (2, 10) =0.7, p=0.57. The interaction was not significant, F (2, 10) =0.59, 

p=0.57 (Fig. 16B). 

c. Comparing DC-resistance from AC-impedance on forearm  

DC-resistance to AC-impedance ratio across stimulation frequencies was significantly 

different, F (2, 10) =31.03, p=0.0001 (Fig. 16C). The resistance ratio was slightly higher at 1 Hz 

(DC:AC1 Hz =1.14) compared to that at 10 Hz (DC:AC10 Hz =1.02) and 100 Hz (DC:AC100 Hz=1.12). 



www.manaraa.com

84 
 

No significant difference was found at the different current levels, F (1, 5) =1.46, p=0.28. Further 

analysis of the interaction between current intensities and frequencies was not significant, F (2, 

10) =0.21, p=0.82. 

d. Error percentage in Predicting Electrode Resistance 

The error percentage ([predicted DC-resistance – actual DC-resistance]/actual DC-

resistance, where the predicted DC-resistance = DC:AC ratio × actual AC-impedance) in 

predicting DC-resistance by AC-impedance was -2.56 ± 3.98 (mean ± SD) at 38 µA and -1.27 ± 

1.72 at 76 µA (at the onset of the stimulation phase, 60 s), -1.09 ± 4.16 at 38 µA and 0.26 ± 0.34 

at 76 µA ( 120 s after the onset of stimulation), and -0.74 ± 4.48 at 38 µA and 0.71 ± 1.22 at 76 

µA (at the end of stimulation, 180 s). The inter-individual variability contributes to an over- or 

under-estimation of the prediction error as seen in Fig. 17 B1 and Fig. 17 B2.  

e. DC-electrode resistance to AC-impedance ratio in gel, comparison with skin 

The DC-resistance to AC-impedance ratio in forearm stimulation was found to be higher 

than that of the in vitro test (Wilcoxon rank sum test: p<0.05, Fig. 16D).  Though interesting, our 

focus here is on application, so we do not diagnose here the source of this difference between 

forearm (in vivo) and gel (in vitro) testing; contribution may include frequency dependence of 

tissue impedance of tissue, which would decrease AC impedance (Dean et al., 2008), as well as 

tissue, namely skin, generated potentials (Grimnes et al., 2011) that would increase the DC 

potential.   The precision of prediction (above) is thus specific to the DC- resistance to AC-

impedance ratio determined from in vivo testing, while the in vivo to in vitro difference reinforces 

the complex nature of tissue impedance and the none-triviality of developing an approach to track 

electrode impedance during tDCS.   
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Figure 16. Interaction of AC test signal with electrical performance and subjective sensation. (A) 

Subjective average pain score, (B) average voltage, (C) average DC-resistance to AC-impedance ratio 

during forearm testing and (D) average DC-resistance to AC-impedance ratio during in vitro test. Values 

represent the average during the phase of constant current (excluding ramp up and ramp down). Average 
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pain scores were based on subjective VAS ratings. Results demonstrate that using AC test signal at different 

amplitudes and frequencies did not change pain score or the overall impedance trajectory. The averaged 

DC-resistance to AC-impedance ratio was also consistent (w1.08) across frequencies and intensities. The 

resistance ratio was found to be lower at 76mA (pk-pk) compared to 38mA (pk-pk) in vitro. 

Part 3: Application of solutions in experiment 

Using in vitro electrode testing, we consider two types of resistance measurement errors 

and test the correction provided by our invention: Type A errors related to cross talk across systems 

and Type B errors identifying failing electrode. 

 

a. Correction of Type A error 

Type A error result when a single electrode fails resulting in a voltage increase across the 

entire two-electrode system.  We demonstrated this error and method of correction using three-

electrode system (Fig. 18A1 & 18B1), where two electrodes are connected to a DC current source 

and a test sinusoid is passed between one of the active electrodes (shared) and a third sentinel 

electrode. This test was carried out with electrodes in conductive gel. We mimicked electrode 

failure (of the shared electrode) by using a corroded tin electrode and by reducing the contact area 

of this electrode and the conductive gel after 100 s of stimulation for about 20 s. Likewise, we also 

demonstrated another electrode failure condition (electrode connected to DC source only) after 

145 s for 20 s too. While the measured voltages across the shared electrode and sentinel increased 

(shown in Fig. 18A1 in terms of DC- resistance), only by inspecting the test signal, it was possible 

to determine the electrode of interest was failing. 
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Figure 17. Reliability of predicting DC-resistance by AC-impedance. Average DC-resistance to AC-

impedance ratio and error percentage in predicting DC-resistance at 38 mA (A1, B1) and at 76 mA (A2, 

B2) during forearm stimulation at different stimulation frequencies. 

 
b. Correction of Type B error  

Type B error are generated when two current sources are active and one current source 

produces a voltage that is detected by the other current source resulting in an error in resistance 

prediction – this error does not require that current source share an electrode when the error voltage 

is generated across tissue.  We demonstrated this error and method for correction using a simple 

four electrode system (in conductive gel) with two independent current sources connected to four 

electrodes (Fig. 18A2 & 18B2).  One current source (S1) has a superimposed test sinusoid on top 
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of DC while the other source was a tDCS. The test signal impedance did not change upon the 

introduction of a second source (Fig. 18B2). In contrast, the DC-impedance sharply increased (Fig. 

18A2) as the second source (S2) was turned on (100-149 s) and decreased when S2 was turned off 

(150 s). Hence, an introduction of a second current source or a faulty electrode in a multi-channel 

stimulation can result in contaminated electrode impedance. Therefore, a test signal across 

electrodes can precisely predict DC-resistance correcting for Type B error.  

 

Figure 18. In vitro demonstration of failures to detect single electrode impedance changes (electrode 

faults) with specificity and methods to correct. (A1, B1) Type A error and method of correction using a 

sentinel electrode and test signal. A DC source (S1) energizes an anode and cathode with 2 mA. A second 

source (S2) passes a test sinusoidal current (38mA pk-to-pk at 10 Hz) between the anode (shared) and a 

sentinel electrode (not used for direct current). At any instance (here around 100- 120 s of stimulation; A1) 

when the anode electrode becomes faulty- in this case intentionally through reduced electrode gel contact 

area, the voltage/resistance increases across the DC current source and at the time the AC 
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voltage/impedance increases across the second test source. In contrast, when a fault is created at the cathode, 

DC-resistance across the first source again increases but AC-impedance at the second course is unaffected. 

(A2, B2) Type B error and method for correction using sinusoidal test signal. Two independent sources 

pass direct current (DC)across independent pairs of electrodes. Source 1 (S1) generates superimposed test 

signal (38 mA) on top of a DC (0.5 mA) while Source 2 (S2) generates 2 mA DC. S2 is activated transiently 

(around 100 - 150 s). Whereas the DC voltage/resistance across S1 is contaminated by the voltage produced 

when S2 is energized, the AC voltage/impedance is not affected. 

 

1.5. Discussion 

a. Clarification of “electrode resistance” during tDCS 

The electrochemical performance of electrodes under DC, as well as tissue, has been 

addressed elsewhere (Merrill et al., 2005) - our focus here is on practical remedy rather than 

theory.  None-the-less, context is necessary to inform rational design.  tDCS is current controlled 

with the voltage output (also called here the total source-voltage) of the stimulator adjusted to 

maintain a controlled current application. In tDCS, when "resistance" is described, it is generally 

referring to the voltage at the output of the current source divided by the current applied – through 

the application of ohms law.  However, the electrode and tissue are not simply resistive (e.g. 

explained by ohms law).  "Impedance" refers to broader relation between current applied and the 

voltage associated with maintaining that current flow.  Linear impedance includes frequency 

specific responses (e.g. the response to sinusoids of varied frequencies).  The electrode and tissue 

are complex non-linear impedance.  For example, the impedance may change over time and both 

electrodes and tissue may generate internal potentials.  For electrodes, this is the over-potential 

from the electrode interface (Minhas et al., 2010) and for tissue this includes skin potentials 

(Nitsche and Paulus, 2000). How then does this complex system of impedance inform monitoring 

of “electrode resistance” for tDCS safety?  It is accepted that during tDCS, significantly increased 
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voltage (at the current source output), which is associated with increased cell impedance, suggests 

a non-optimal condition at the electrode or electrode skin interface.  This is biophysically justified 

since maintaining a low electrode over-potential voltage (see (Minhas et al., 2010) for detailed 

discussion) at the electrodes and high conductivity (e.g. good gel/saline contact with the electrode 

and skin) are associated with minimized chemical reactions and good contact.  These in turn 

promote, but do no guarantee, tolerated stimulation.   During tDCS, the voltage drop across a given 

electrode divided by the DC current across that electrode is what we refer to as the electrode 

resistance, while acknowledging it is not a simple resistance. Thus, we aimed to develop a system 

that allows measurement of a test-signal that is correlated with the electrode resistance during 

tDCS (passage of mA over minutes).  We refer to electrode resistance equivalently as DC-

electrode resistance to contrast with measurement derived from test signals.  Our goal is further to 

resolve the electrode resistance of any given electrode during two or multi-channel tDCS. 

b. Importance of electrode resistance measurement in tDCS and limitations of existing 

measurement approaches 

The common adverse events associated with tDCS is skin irritation; conditions at the 

electrode are considered critical for tolerated stimulation (Minhas et al., 2011).  The passage of 

electrical current across electrodes, and especially direct current, will strain electrode conditions 

that, if significant, can herald skin irritation. The most robust way to minimize skin irritation is 

through limiting current applied (e.g. total charge per session), use of well-designed electrodes 

(e.g. designed for tDCS), and following protocols for electrode assembly and skin preparation.  

None-the-less, nonideal conditions can arise.  Subject reporting of sensation, general observation 

of electrode/skin conditions, and the monitoring of “electrode resistance” during stimulation are 

the only methods to monitor electrode conditions – and of these, electrode resistance is the only 
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device controlled and objective measures.   Electrode resistance is thus universally relied on in 

tDCS. 

However, as discussed above, the “electrode resistance” monitored is, in fact, the voltage 

at the current stimulator output (as the voltage is adjusted to maintain constant current) divided by 

the applied current.   This voltage reflects many non-linear processes at both electrodes and the 

tissue (equations i to xiii).  While valuable in tDCS monitoring, since large excursions in voltage 

are indicative of non-ideal electrode conditions, this is not a measure of single electrode resistance 

or even strictly resistance, since electrode over-potentials contribute as well.  Rational 

development of tDCS can benefits from recognizing the none-triviality of this “electrode 

impedance” measurement.  

Then multiple electrodes are used but the challenges in measuring single electrode 

resistance still exist where electrode impedances are confounded through cross talk.  

Measurements of “electrode resistance” (as extrapolated from the voltage as one of the current 

sources) may be misleading such that poor electrode conditions are not detected (false negative) 

or good electrode conditions as reported as poor (false positive).  While our method for single 

electrode impedance is valuable for two electrode tDCS, for multi-electrode tDCS it becomes 

essential. 

c. Commonalties and contrast with Electrode Impedance Tomography 

Four electrode systems (tetra polar) are commonly used in tissue impedance measurements 

(“Bioimpedance and Bioelectricity Basics - 3rd Edition,” n.d.; Pettersen and Høgetveit, 2011), and 

still more sophisticated multi-electrode methods do exist or have been developed for Electrode 

Impedance Tomography (EIT).  But the application here is different in key regards.  First, our 

measurand of interest is the electrode impedance with the goal to minimize contribution from 
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tissue, while in EIT the measurand of interest is tissue impedance with efforts taken to minimize 

contribution of electrodes.  Second, significant current must be passed across electrodes for 

stimulation that results in changing electrode impedance, while in EIT minimal current is used.  

During tDCS, the changes in electrode impedance and electrode-over potential are particularly 

significant. None-the-less, to extend our solutions here, key techniques can be adapted from EIT 

including time or frequency multiplexing.  What we demonstrated here is how to combine 

approaches used in EIT to resolve electrode impedance (more generally over-potential) during 

multi-channel direct current stimulation.  

d. Assumptions to solution 

 

The fundamental assumption to our solutions (both with and without a sentinel) is that the 

passage of a low-intensity and low-frequency sinusoidal current across an electrode (used for 

tDCS) produces a sinusoidal voltage across the electrode that predicts the DC-voltage across that 

same electrodes.  Thus, the sinusoidal test impedance should predict the DC impedance of the 

electrode during tDCS.  

A further assumption is that electrode resistance (at DC and also to the test signal) is greater 

than tissue resistance.  We consider this assumption valid in the sense that poor electrode 

conditions will result in high electrode resistance and therefore will be detected.  If a high 

resistance measurement is made, this is indicative of a poor electrode condition (not tissue 

conditions).  If electrode resistance is low, and so comparable to tissue resistance, the resulting 

low measurement is regardless not of concern. 

We also assumed and tested that the passage of the test current does not, in itself, confound 

either the tolerability of tDCS or electrode performance - meaning the test signal is presumed 

innocuous.  These assumptions appear valid for the conditions tested here as physiological actions 
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on peripheral nerves or skin properties could be reflected by a chance in sensation or resistance, 

respectively. Since the current densities at the brain are much lower than the skin (DaSilva et al., 

2011) where changes could not be detected, and experimentally based on prior neurophysiologic 

observations (Antal et al., 2008; Nitsche and Paulus, 2000), the test signals used here are predicted 

not to influence brain function.   

Two distinct technological solutions are shown, both of which rely on our tested 

fundamental assumption, that AC-impedance can track DC-resistance.  One approach requires the 

use of a single additional sentinel electrode, that is used a reference for AC voltage measurement 

across each stimulation electrode of interest.   In this first approach, no additional current sources 

are needed, but existing current sources provide a small test AC current superimposed on DC, 

which is technically incremental.  In the second approach, no additional electrodes are required 

but additional current sources providing only test signal are required at a number that is a function 

of the montage and stimulating source configuration, which is technically feasible. However, the 

first solution using a sentinel electrode may be advantageous as it is easily scalable, and the second 

approach may fail if a single electrode fails completely.  
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Appendix 2: Dry tDCS: Tolerability of a novel multilayer hydrogel 

composite non-adhesive electrode for transcranial Direct Current 

Stimulation 

 

2.1. Outline 

This Appendix validates the performance of the first “dry” electrode for tDCS which 

excludes 1) any saline or other electrolytes, that are prone to spread and leaving a residue; 2) any 

adhesive at the skin interface; or 3) any electrode preparation steps except the connection to the 

stimulator. A version of this study has been published (Khadka et al., 2018a). We concluded that 

dry (residue-free, non-spreading, non-adhesive, and no-preparation-needed) electrodes can be 

tolerated under the tested tDCS conditions, and possibly more broadly used in non-invasive 

electrical stimulation. 

 

2.2. Introduction 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool used 

in healthy and patient populations where a weak direct current (1-2 mA) is applied through two or 

more electrodes placed on the scalp (Bikson et al., 2018; Nitsche et al., 2008). A major contributor 

to the rapid and broad adoption of tDCS is portability and ease-of-use. tDCS is well tolerated with 

common mild side-effects such as transient cutaneous sensations (for e.g. as warmth, itching, and 

tingling) and erythema (Antal et al., 2017; Aparício et al., 2016; Bikson et al., 2016; Fertonani et 

al., 2015; Paneri et al., 2016). However, when (and only when) established standard protocols are 

not followed (Woods et al., 2016), tDCS can produce significant skin irritation (Bikson et al., 2009; 

Poreisz et al., 2007; Shiozawa et al., 2013; Wang et al., 2015). Given that cutaneous sensation and 
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irritation are the primary risks of tDCS (Antal et al., 2017; Brunoni et al., 2011; Fertonani et al., 

2015; Minhas et al., 2011), proper electrode preparation and monitoring are vital for tolerability 

and reproducibility (Bikson et al., 2016; Brunoni et al., 2012; Paneri et al., 2016). Yet, the 

preparation and placement of tDCS electrodes remain the most cumbersome and prone-to-error 

steps (Fertonani et al., 2015). For example, both the level of sponge fluid saturation and head-gear 

tightness need to be titrated to balance good skin contact while avoiding of saline spread, and 

sponges can dehydrate or move (Woods et al., 2015) over an extended time. Thus, despite success 

with current research/clinical grade equipment and accessories, even for remote-supervised home 

use (Charvet et al., 2017), there is an interest to continue to enhance technology to deploy tDCS.  

The sponge-pocket style electrode (25-35 cm2) with conductive rubber insert, pin 

connectors, and saline application by the operator is the most traditional tDCS electrode used 

(Kronberg and Bikson, 2012; Woods et al., 2015), but most prone to preparation error, notably 

when poor materials are used by insufficiently trained users (DaSilva et al., 2011). Circular 

sponges do not appear to provide an advantage (Ambrus et al., 2011; Minhas et al., 2011). The 

introduction of pre-saline-saturated snap-connector sponge electrodes (Knotkova et al., 2019) 

automates most of the sponge electrode preparation process.  Electrolyte gel or paste is used in 

specialized tDCS application (e.g. in MRI (Orlov et al., 2017)). Specialized adhesive hydrogels 

electrodes can support tDCS (Paneri et al., 2016). High-Definition electrodes with a distinct small 

form factor (~1 cm diameter (Abhishek Datta et al., 2009)) use specialized hydrogels (Minhas et 

al., 2010). What all these electrodes design share, is a “wet” electrode-skin-interface, where a fluid 

or viscous electrolyte is assumed to saturate the skin (Merrill et al., 2005), which in turn result in 

some residue on the skin.   
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Here, we validate the performance of the first “dry” electrodes for tDCS. Dry electrodes 

exclude: 1) any saline or other conductive hydrogel-based gel or paste, that are prone to leak or 

spread, and that leave a residue; 2) any adhesive at the skin, either around the electrode or part of 

the hydrogel; or 3) any electrode preparation steps by the operator except connection to the 

stimulator. A novel Multilayer Hydrogel Composite (MHC) electrode design fulfills these criteria. 

FEM models and a skin-phantom were used to verify electrode performance followed by 

tolerability validation in healthy subjects. Adverse events, erythema, and VAS pain were scored 

using established protocols (Brunoni et al., 2011; Fertonani et al., 2015; Paneri et al., 2016; 

Shiozawa et al., 2013). In addition, we developed a biocompatible flexible printed circuit board 

current sensor matrix (fPCB-CSM) to map current distribution inside the electrode during phantom 

or subject stimulation. In all experiments, MHC dry-electrode performance was compared against 

a state-of-the-art sponge electrode to address the hypothesis: can tDCS be applied with a dry 

electrode with comparable tolerability as conventional “wet” techniques.   

2.3. Materials and Methods 

This study involves experimental measures in phantom (voltage) and participants (via VAS 

and adverse events reporting questionnaire), computational FEM simulation in phantom, current 

mapping in the electrode, and an algorithm-based image processing of erythema distribution. 

2.3.1. Participants 

The study was conducted in accordance with the protocols and procedures approved by the 

Institutional Review Board of the City College of New York, CUNY. Twenty healthy participants 

(13 males and 7 females; age 19-34 years; mean age 24.7± 4.9) completed this study. Volunteers 

with any sign of skin disorder/sensitive skin (ex. eczema, severe rashes), blisters, open wounds, 
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burn including sunburns, cuts or irritation (e.g. due to shaving), or other skin defects which 

compromise the integrity of the skin at or near stimulation locations were excluded from this study. 

However, participants on mild acne medication with non-irritating skin disorders were not 

excluded. Similarly, prospective volunteers with any neuropsychiatric disorders or receiving 

medication for such disorders were excluded from this study. Participants volunteered in four 

different tDCS sessions using 1.5 mA and 2 mA current intensities plus an additional two sessions 

at 2 mA with the fPCB-CSM for both MHC dry and sponge-electrodes in a randomized order. All 

participants provided written informed consent to participate in the study. Participants were seated 

in an upright relaxed position and performed a lexical decision task throughout the duration of the 

stimulation. 

2.3.2. Novel sensor array 

The current sensor made up of a novel biocompatible flexible printed circuit board current 

sensor matrix (fPCB-CSM) comprises two units: 1) measuring unit (top view) and 2) sensor unit 

(bottom view) (Fig. 19, top middle and right panel). The measuring unit (rubber electrode 

positioning side) of the novel sensor array has an exposed gold (Au) plated uniform copper (Cu) 

metal surface, whereas on its distal side, there are twenty-five 50 Ω soldered resistors (5 rows and 

5 columns of resistors) and five common grounds for each row. The sensor unit underneath the 

measuring unit (sponge/MHC-dry electrode side) has a high heat resistance polyimide insulating 

substrate that divides the conductive metal into twenty-five small sensor electrode arrays. Each of 

these twenty-five sensor arrays is connected independently to the twenty-five test resistors located 

at the measuring unit. Each end of the sensor array has a dimension of 5 cm x 5 cm x 0.03 cm 

(Fig.17). The entire sensor array is assembled into one compound unit using a biocompatible 

polyimide substrate.  
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Figure 19. A configuration of conventional sponge and MHC-dry electrode, with and without fPCB 

within-electrode current mapping sensor. and voltage map represented as false colormap measured in 

the electrode using fPCB voltage sensor. (A1, B1) Electrical stimulation set-up on a participant's forehead 

using a bifrontal (left/right SO) montage electrode configuration. A biocompatible rubber strap secured 

both electrode types on the forehead and the electrodes were connected to the stimulator. In some 

experiments, a customize novel fPCB current mapping sensor array unit (bottom panel of B1) positioned 

inside the electrode mapped at the different location of electrode plane during tDCS. Current mapping data 

measured from 12 participants for either electrode type (false colormap for each sensor). 

2.3.3. Voltage sensor array for Phantom study 

Twenty-Five Ag/Agcl pellet shaped electrodes (diameter =1 mm) were embedded inside 

an agar phantom (based on (Khadka et al., 2018c; Smith, 1993)) such that the planar assembly 

mimics the shape of an overlaid  5 x 5 cm2 tDCS electrode, and the position of each electrode 

corresponds to the center of the 25-small fPCB-CSM sensor arrays. An embedded reference 
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electrode placed 5 cm away from the twenty-five electrode array was used as a ground for voltage 

measurement across the recording electrodes. 

2.3.4. MHC dry-electrode 

The dual layer structure of the MHC dry-electrode includes independently optimized 

mechanical, electrical, and chemical properties of the hydrogel. The top layer (thickness, 0.6 mm) 

of the MHC dry-electrode was composed of an adhesive polymer hydrogel, whereas the bottom 

layer (thickness, 1 mm) had a non-adhesive bio-compatible polymer hydrogel containing Poly-

Vinyl Alcohol (PVA) (Fig. 19). Both layers were optimized in a way that the top layer becomes 

less resistive to redistribute the injected current across the electrode plane, whereas the bottom 

layer becomes highly resistive layer and minimizes current clustering at the skin (Kronberg and 

Bikson, 2012). Furthermore, any electrochemical produced (e.g. pH changes) at the electrode (non-

ionic/ionic conduction) interface within the electrodes were optimized using the top layer as a 

diffusion barrier (Merrill et al., 2005). The electrode components weight by percentage) were: 

cross-linked acrylic resin (top layer: 15 - 25; bottom layer: 15 - 25); polyhydric alcohol (top layer: 

40-60; bottom layer: 30-60); NaCl as an electrolytic salt (top layer: < 10; bottom layer: < 8); 

additives / stabilizers (top layer: < 0.5; bottom layer: < 0.5); deionized water (top layer: 20 – 40; 

bottom layer: 20 - 40); polyvinyl alcohol resin (top layer: none; bottom layer: 1 - 5). 
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Figure 20. Electrical performance of conventional sponge-electrode and MHC dry electrode verified 

using a skin-phantom and FEM simulations. Phantom voltages and electrode currents were measured 

using the Ag/AgCl array or fPCB-CSM, respectively, with corresponding FEM prediction. (Ai) 

Architecture of a phantom model showing expanded cut off view of rubber electrode, sensor array, and 

sponge-electrode assembly on the phantom-gel surface. (Aii) illustration of fPCM-CSM sensor unit 
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positioned over sponge pad. (Aiii)represents an orientation of current density flow streamlines from inside 

of the electrode to the phantom. (A1) Voltage distribution measured experimentally and predicted by FEM 

simulation at the sensor-electrode interface and phantom bulk surface. The leftmost panel ofA1illustrates 

side-view of the electrode-sensor and phantom assembly, and predicted voltage distribution at the sensor-

electrode interface (dorsal), within-sponges (medial), and phantom bulk surface (ventral). Middle row 

ofA1shows FEM prediction of voltage distribution at the sensor-electrode interface and phantom bulk 

surface using simulation result (A1ai,A1bi) and false voltage distribution map at each small squared surface 

that resemble the shape of the experimental sensor arrays (A1aii, A1bii) and the measured voltage from 

experimental measures (A1c). Peak FEM predicted voltage at the sensor-electrode interface was 0.126 V 

and 0.122 V at the phantom bulk surface. Experimental voltage measurement at the phantom bulk surface 

was 0.22 V (peak). (A1d) Graphical representation of voltage line graphs plotted from diagonal voltage 

components at the sensor-electrode interface and phantom bulk surface (FEM prediction results), and an 

experimental measure. Position of the sensors is represented as numbers in a diagonal fashion as illustrated 

inA1ai, A1bi and A1c. Results represents an overall distribution map of voltage. (A2) represents 

current/current density measured experimentally and predicted by the FEM simulation at the sensor-

electrode interface and phantom bulk surface. Panel at the left ofA2showsstacked view of current density 

distribution from sensor-electrode interface (dorsal), within-sponges (medial), and phantom bulk surface 

(ventral). FEM prediction of current/current density and experimental measurement of current are shown 

in the middle panel ofA2. Peak current of 5 A/m2 (A2a) and a peak current of 0.135 mA (A2aii) was 

predicted at the sensor-electrode interface, whereas at the phantom bulk surface FEM predicted a peak 

current density of 0.47 A/m2 (A2bi) and a peak current of 0.0164 mA (A2bii). Current measured 

experimentally (A2c) at the sensor-electrode interface was almost uniform. (A2d) Representation of line 

plots of diagonal current measured experimentally and predicted by FEM at sensor-electrode interface and 

phantom bulk surface. (Bi) Illustration of MHC dry electrode positioning over the phantom-gel surface. 

(Bii) schematics of the sensor array rendered on top of the MHC dual-layered (top layer: 0.1 S/mand bottom 

layer:0.001 S/m) dry electrode. (Biii) represents uniformly seeded current density streamlines distribution 
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from the surface of rubber electrode to the phantom. Left panel ofB1shows slice view of electrode assembly 

and FEM predicted voltage at the sensor-electrode interface, within-MHC dry electrode, and phantom bulk 

surface. Middle panel ofB1is an illustration of voltage distribution as predicted by FEM simulation (Sensor-

electrode interface: B1ai, B1aiiandphantom bulk surface: B1bi, B1bii) and measured experimentally (B1c). 

Peak predicted voltage was 3.2 V at the sensor-electrode interface and 0.16 V at the phantom bulk surface, 

whereas experimentally, a comparable peak voltage of 0.23 V was measured as that of the sponge-electrode. 

Line plots of voltages shows even voltage distribution in the diagonal direction. (B2) Stacked slices of 

current density distribution at the sensor-electrode interface, within the MHC electrode, and at the phantom 

bulk surface (left panel). A comparable peak current density of 5 A/m2 as that in the sponge electrode was 

predicted at the sensor-electrode interface (B2ai) whereas mean peak current was 0.082 mA (B2aii). 

Predicted current density (B2bi) and current (B2bii) at the phantom bulk surface was comparable to that of 

the sponge-electrode and the distribution was almost uniform (slightly higher at the center but without 

edges). Comparable current as in the conventional sponge electrode was measured at the senor-electrode 

interface (B2c). Diagonal current distribution line graph was almost identical to that of conventional sponge 

electrode (B2d). 

The effectiveness of the MHC dry-electrode was successfully evaluated not only as a 

current re-distribution layer but also as a diffusion barrier layer. In the diffusion barrier test, pH 

changes were measured at the entire conductive silicone rubber/top hydrogel layer, top/bottom 

hydrogel layer, and bottom hydrogel layer/skin interface after 2mA 30min stimulation. There was 

no pH change at the bottom/skin hydrogel interface. Only less than 0.3 % of the total electrode 

area showed pH change at the top/bottom hydrogel layer interface (n=30). 

2.3.5. Electrode preparation and placement 

The experiment was conducted on rectangular phantom bulks (15 cm x 8 cm x 5 cm; 

prepared using established standard protocols as discussed in (Khadka et al., 2018c; Smith, 1993)). 
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Prior to the electrode placement, a thin coat (~ 0.5 cm) of conductive electrode gel (Signa gel, 

Parker Laboratories Inc., NJ, USA) was applied over the agar phantom bulk. Conductive gel was 

used to maintain a consistent contact between the stimulation electrodes and the phantom. For the 

phantom study, the conventional sponge-electrode (5 x 5 cm) were first soaked with saline (0.9 % 

NaCl) and a conductive carbon rubber (5 x 5 cm, Carbon Rubber Electrode, Soterix medical Inc., 

NY, USA) was inserted inside the sponge pocket. While the whole assembly is often referred as 

an electrode in tDCS, the electrode is technically the conductive rubber and the saline/gel is 

technically the electrolyte (DaSilva et al., 2011). Two electrodes (anode and cathode; 5 x 5 cm 

each) were then positioned on the phantom with an interelectrode distance of 10 cm and connected 

to a tDCS stimulator (1x1 tDCS, Soterix Medical Inc., NY, USA). The non-adhesive bottom layer 

of the MHC dry-electrode was placed over the phantom bulk and a conductive silicone rubber was 

positioned on the top adhesive layer of the MHC-dry electrode which was connected to the tDCS 

device. 

For the human study, a bifrontal montage (anode left and cathode right on the supraorbital 

(SO) region of a forehead) was used to place both type of electrodes. Note that we selected this 

particular montage to overcome the major limitation of the MHC dry-electrode- not applicable in 

hairy regions of scalp unlike the conventional “wet” sponge-electrode.  Electrodes were positioned 

and secured over the brain region using an elastic fastener (Soterix Medical Elastic Fastener, 

Soterix Medical Inc., NY, USA).  

When current at the electrode was measured, the fPCB-CSM array was placed in between 

the sponge or MHC dry-electrode (bottom) and the conductive carbon/silicone rubber electrode 

(top). Together they formed a stacked electrode configuration of rubber electrode, fPCS-CSM 

array, and sponge/MHC dry-electrode respectively. 
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2.3.6. Stimulation and Current/Voltage Measurement 

 A weak 1.5 or 2 mA direct current (with an additional linear ramp up and down of 30 s at 

the beginning and at the end of stimulation) from a tDCS stimulator was applied in both human 

and phantom studies through sponge or MHC dry-electrodes. In the human study, voltage was 

measured across each test resistor located at the measuring unit of the fPCB-CSM using a digital 

multimeter (Fluke 87 V Industrial Multimeter, Fluke Corporation, WA, USA) and the 

corresponding current was calculated using the Ohm’s law. In the phantom bulk experiment, 

voltage was measured across the twenty-five embedded recording electrodes using a low power 

instrumentation amplifier (AD 620, Analog Devices, MA, USA), whereas current at the electrode 

was measured using the aforementioned procedure as in the human study. Note that for current 

measurement at the electrode in both human study and phantom study, the fPCB-CMS was 

positioned over the sponge or MHC dry-electrode and the carbon/silicone rubber electrode was 

placed on the top surface of the sensor. 
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Table 1. Representation of adverse events as intensity and relationship to tDCS based on subjective 

reporting before and after stimulation (pre- and post). Reporting of adverse events (mean ± SD) were 

comparable across electrode types and stimulation intensities. 

2.3.7. Pain and Adverse Events  

Headache, neck pain, scalp pain, tingling, burning sensation, itching sensation, sleepiness, trouble 

concentrating, dizziness, and nausea were assessed through self-reporting questionnaires 

completed by the participants before and after each session (Table 1). The intensity of the events 

was rated from 1 - 4 (1 = absent, 2 = mild, 3 = moderate, and 4 = severe) and their relationship to 

tDCS was rated in a scale from 1 - 5 (1 = none, 2 = remote, 3 = possible, 4 = probable, and 5 = 

definite). A visual analogue scale (VAS) was used during the 20 min 1.5 mA or 2mA stimulations 

to report skin sensation or pain (if any) in a scale of 1-10 (1: no or minimum pain and 10: 

unbearable pain). Stimulation was aborted if a participant reported a VAS of 7 or above. The VAS 

for pain was collected during the stimulation, while the participants were performing the lexical 

decision task. The lexical decision task was presented as a mixture of words (e.g. house, ship, 

sleep, etc.) and pseudowords (nonsense strings that represented the phonotactic rules of a language, 

like trud in English) and participants reported whether the presented stimulus was a word or a 

pseudoword. The lexical decision task was paused every two minutes to allow participants time to 

report the VAS. 

2.3.8. Computational Model and Solution Method 

The phantom was modeled as a homogenous and isotropic volume conductor of dimension 15 cm 

x 15 cm x 3.55 cm (including a 0.5 mm thin layer of conductive gel). Computer-aided design 

models of phantom bulk, conductive gel, sponge or MHC dry- electrode, sensor arrays, and rubber 

electrode (Fig. 20, 22) were modeled in SolidWorks 2013 (Dassault Systemes Americas Corp., 
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MA, USA) and were assembled in ScanIP software (Synopsys, Exeter, UK). Dimensions of rubber 

electrode, MHC dry-electrode, sponge, and sensor arrays were based on the experimental values. 

An adaptive tetrahedral meshing algorithm was implemented in ScanIP to generate meshes of the 

phantom bulk for both conventional sponge-electrode and MHC dry-electrode simulation cases. 

The finite element method (FEM) models of the volumetric meshes were then imported and solved 

in COMSOL Multiphysics 4.3 (COMSOL, Inc., MA, USA) using electric current physics at a 

steady-state assumption. The final FEM phantom model was solved for greater than 600,000 

degrees of freedom and had greater than 400,000 tetrahedral elements. The phantom conductivities 

were based on prior literature [28]. The Laplace equation (∇ (σ∇V) = 0 where ‘V’ is potential, ‘σ’ 

is conductivity) was solved to simulate direct current stimulation. Boundary conditions for 

phantom simulation were applied as uniform normal current density (inward current flow: Jnorm) 

at the top exposed surface of the anode (2 mA) and ground at the bottom surface of the phantom 

bulk layer. All other external surfaces of the phantom bulk model were electrically insulated. Two 

versions of MHC dry-electrodes with varying electrical conductivities of the top and bottom layers 

were simulated (MHC dry-electrode Variation I and II; Fig. 20, 22).  

2.3.9. Image post processing and analysis 

The photographs of participant’s forehead (area under anode) taken immediately after stimulation 

were analyzed for erythema distribution using a customized MATLAB (MathWorks, MA, USA) 

based image processing graphical user interface (GUI) as previously illustrated in (Ezquerro et al., 

2017) (Fig. 3).  

2.3.10.   Statistical Tests  
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Normality of the VAS, cumulative adverse events responses, and adverse events in relationship to 

tDCS were tested using Shapiro-Wilk tests with Lilliefors significance correction across electrode 

types (dry-electrode vs. sponge-electrode) and stimulation intensities (1.5 mA vs. 2 mA). A 

corresponding non-parametric test (Wilcoxon signed rank test) or a parametric test (repeated 

measures ANOVA) probed significance of the data. A critical value (α) of 0.05 was accepted as a 

significant difference between groups. 

2.4. Results 

Voltage and current density/current distribution at the sensor-electrode interface and 

phantom bulk surface during direct current stimulation (2 mA, 20 min) were predicted by FEM 

simulation (phantom) and measured experimentally (phantom gel and in vivo study) using both 

conventional sponge-electrode and MHC dry-electrode. In addition, VAS score, lexical decision 

task response, and adverse event analysis based on participants’ rating and response were analyzed. 

2.4.1. In vivo current mapping 

The fPCB-CSM mapped the overall current distribution inside both sponge-electrode and 

MHC dry-electrode with 2 mA tDCS. The distribution was represented as a heat map (mean and 

standard deviation, or intersubject variability) where each square represents current at one sensor 

position (Fig.19A2, A3, A4: Sponge-electrode and Fig. 19B2, B3, B4: MHC dry-electrode). The 

total current across all fPCM-CSM sensors was 2 mA in all cases, as expected. Across individuals, 

there was no evident concentration of current at any fPCM-CSM sensor or sensors, for either MHC 

dry-electrode or sponge-electrode.  On an individual basis, hot spots (e.g. 6x average) were 

detected but with no consistent pattern suggesting that it reflect idiosyncratic contact of the 

electrode with the skin surface or internal skin or electrode inhomogeneities. In any case, there 
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was no average or individual electrode observation of current concentration at the electrode edge 

(at sensors around the perimeter) as much be predicted based on prior models (Khadka et al., 

2015b; Kronberg and Bikson, 2012; Minhas et al., 2011; Miranda et al., 2009; Opitz et al., 2015). 

2.4.2. Erythema distribution 

Erythema was diffused across the skin-electrode contact area in both MHC dry-electrode 

and sponge-electrode for both stimulation intensities as indicated by the probability heat map. For 

the MHC dry-electrode, the peak cumulative probability of erythema distribution for 1.5 mA was 

50 %; 41.2 % for mild and 17.65 % for strong (Fig. 21B1) whereas for 2 mA (Fig. 21B2), the 

cumulative erythema percentage was 73.53 %; 52.9 % for mild and 32.35% for strong. 

Conventional sponge-electrode had the peak probability of 50 % erythema distribution for 1.5 mA 

(Fig. 21B3); 50 % for mild and 18.9 % for strong, and for 2 mA (Fig. 21B4), the peak cumulative 

erythema was 71.1 %; 57.9 % for mild and 26.32 % for strong. The mean probability of erythema 

distribution yielded by MHC dry-electrode and conventional sponge-electrode were comparable 

(Fig. 21). 
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Figure 21: Graphical representation of skin redness (erythema) distribution over the site of 

stimulation after tDCS (20 min, 1.5 mA, and 2 mA). (A1) depicts the image analysis steps where 

photographs of participants taken immediately after stimulation were passed through series of filters to 

isolate erythema region from the site of stimulation by defining a region of interest (ROI). (A2) represents 

a binary mask of erythema image traced by the rater. (A3) shows steps of computing the probability of 

erythema distribution by stacking all binary erythema mask. (A4) illustrates the mean heatmap of erythema 

distribution across subjects represented as a percentage across the ROI. Peak represent 100% probability in 

the color bar and probability was depicted as mild, strong, and combined heatmaps. (B1, B2) are erythema 

heatmaps of 1.5 mA and 2 mA using MHC dry electrode and (B3, B4) represents heatmaps for sponge-

electrode. Combined erythema distribution was widely diffused with a comparable peak probability of 

erythema in both electrode types. 
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2.4.3. Performance of conventional sponge-electrode and MHC dry-electrode with variations: 

FEM prediction and Experimental Measures  

For Sponge-electrode, the FEM model predicted a peak voltage of 0.126 V at the sensor-

electrode interface (Fig. 20A1ai, 20A1aii) and 0.122 V (peak) at the phantom bulk surface (Fig. 

20A1bi, 20A1bii). An embedded electrode array positioned at the phantom bulk surface measured 

a maximum voltage of 0.22 V (Fig. 20A1c). Predicted voltage and experimentally measured 

voltage (Mean ± SD) distribution line plots were almost even across diagonal direction (Fig. 

20A1d), however at the center of the phantom bulk surface, it was slightly higher. The FEM model 

of sponge-electrode predicted a peak current density of 5 A/m2 and a peak current of 0.135 mA at 

the sensor-electrode interface, whereas at the phantom bulk surface, the predicted peak current 

density and peak current were 0.47 A/m2 (Fig. 20A2bi) and 0.0164 mA (Fig. 20A2bii) 

respectively. Maximum current measured experimentally at the sensor-electrode interface for 

sponge-electrode was 0.10 mA and the overall current distribution was uniform (Fig. 20A2c). 

However, the FEM model predicted somewhat higher current density/current at the edges (Fig. 

20A2d). 
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Figure 22. Performance of MHC dry electrode with variations in electrical conductivities of the dual 

layers. Voltage and current/current density distribution as predicted by FEM at the sensor-electrode 

interface and the phantom bulk surface are represented.(A) Illustration of voltage distribution at the sensor-

electrode interface and phantom bulk surface when the conductivities of the dual layers are reversed (MHC 

dry-electrode Variation I: top layer:0.001 S/mand bottom layer:0.1 S/m). Stacked slice view of voltage 

distribution from dorsal to ventral end of the MHC Variation I electrode-phantom assembly (left panel). 
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FEM model predicted a comparable voltage at the sensor-electrode interface (A1ai, A1aii) and phantom 

bulk surface (A1bi, A1bii) as that of the actual MHC dry electrode. (A2) represents current density and 

current distribution as predicted by FEM simulation. The overall distribution of current density and current 

was analogous to the MHC dry-electrode (A2ai, A2aii, A2bi, A2bii, A2c). (B) Voltage and current 

density/current distribution with MHC dry-electrode Variation II (top layer and bottom layer:0.1 S/m). The 

left panel ofB1represents a distribution of voltage at the sensor-electrode interface and phantom bulk 

surface. FEM simulation predicted slightly lower peak voltage (0.19 V) at the sensor-electrode interface 

compared to the actual MHC dry-electrode (B1ai, B1aii), whereas peak voltage at the phantom bulk was 

comparable (B1bi, B1bii). Representation of current density distribution at different interfaces (B2). The 

simulation predicted comparable current density (B2ai) and current (B2aii) at the sensor-electrode interface, 

however, at the phantom bulk surface, current density (B2bi) and current (B2bii) was slightly lower than 

that of MHC dry electrode. (B2c) represents variation in current at the sensor-electrode interface and 

phantom bulk surface. 

For MHC dry-electrode, the predicted peak voltage at the sensor- electrode interface was 

3.2 V (Fig. 20B1ai, Fig. 20B1aii) and 0.16 V at the phantom bulk surface (Fig. 22B1bi, Fig. 

22B1bii), higher than the conventional sponge-electrode. The experimental voltage measured at 

the phantom bulk surface during MHC dry-electrode stimulation was comparable to that of 

sponge-electrode (Fig. 20B1c and Fig. 20A1c). The FEM model predicted peak current density 

and current were 5 A/m2 and 0.082 mA at the sensor-electrode interface and 0.41 A/m2 and 0.0198 

mA at the phantom bulk surface (Fig. 20B2ai and Fig. 20B2aii, and Fig. 20B2bi and Fig. 20B2bii) 

for the MHC dry-electrode. Overall current distribution at the phantom bulk surface was almost 

uniform, with peaks around the center (Fig. 20B2bi). Current distribution measured experimentally 

during MHC was comparable to that of conventional sponge-electrode (Max: 0.10 mA, Fig. 

20B2c).  
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In MHC dry-electrode Variation I, the FEM predicted similar voltage and current 

density/current distribution as that of the original MHC dry-electrode (Fig. 19). However, results 

from MHC variation II were lower than that of the original configuration of dual hydrogel layers. 

In MHC variation II, the peak voltages at the sensor electrode interface and phantom bulk surface 

were 0.19 V and 0.15 V (Fig. 22B1ai, Fig. 22B1aii, and Fig. 22B1bi, Fig. 32B1bii), and the 

predicted peak current density and current at the sensor electrode interface and phantom bulk 

surface were 5 A/m2 and 0.0855 mA, and 0.35 A/m2 and 0.0168 mA respectively (Fig. 22B2ai, 

Fig. 22B2aii, and Fig. 22B2bi, Fig. 22B2bii).  

2.4.4. Tolerability 

A total of 120 treatment sessions were conducted, including the in vivo current mapping 

study. No serious adverse events were reported. Eight participants withdrew from the study: six 

participants withdrew due to scheduling issues (i.e. inability to meet scheduling criterion for a 

minimum of four sessions), one participant withdrew due to itching during a 2 mA MHC dry 

session (the only withdrawal during a session), and one participant withdrew without stating a 

reason. Thus, all but one withdrawal were between-sessions. In total, twenty subjects completed 

the entire study and group level analysis were conducted on only these 20 subjects. tDCS adverse 

events were assessed by a self-report questionnaire immediately post-stimulation period (session-

wise data, Table 1).  
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Figure 23. Representation of adverse events for both MHC dry-electrode and sponge-electrode across 

stimulation intensities (1.5 mA and 2 mA) on a scale of 1-5; 1: none, 5:max). Participants are color-

coded. The highest incidence of adverse events across all treatment groups were skin tingling, burning, and 

itching sensations (A1, A2, B1, B2). There was no statistically significant difference (P>0.05) in adverse 

events between stimulation intensities, however between the electrode types, there was a significant 

difference (P<0.05): less adverse events reported in the MHC dry-electrode. 
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Figure 24. Adverse events reporting for MHC dry-electrode and sponge-electrode at different 

stimulation intensities for relationship to tDCS. There was no significant difference(P>0.05) in adverse 

events between conventional sponge-electrode (B1, B2) and MHC dry-electrode (A1, A2), and the 

stimulation intensities (1.5 mA Vs 2 mA). 
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Figure 25. VAS rating at different stimulation intensities (1.5 mA and 2 mA) for a conventional 

sponge and MHC dry electrode. Participants (20) were color-coded as the cumulative adverse events and 

relationship to tDCS data, and the VAS pain score (1e10 scale; 1: no pain, 10: unbearable pain) was 

collected every 2 min during each stimulation sessions. There was no significant different (P<0.05) in the 

VAS rating across all four stimulation sessions. 

The most common adverse events with the highest incidence across all treatment groups 

were skin tingling, burning, and itching sensations. The cumulative adverse events across 

stimulation intensities (1.5 mA (Mdn =1) Vs 2 mA (Mdn =1)) when analyzed using the Wilcoxon 

signed-rank test (non-parametric test) were not significantly different (Z = -0.003, P = 0.997), 

whereas across electrode types (MHC dry-electrode (Mdn =1) Vs sponge-electrode (Mdn =1)), the 

adverse events were higher for the sponge-electrode (Z = -2.344, P = 0.019) (Fig. 23). When 

analyzed the interaction between the electrode types and stimulation intensities in relationship to 

the tDCS, the adverse events were comparable (Z = -1.760, P = 0.078; Z = -.439, P = 0.660). The 
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median for stimulation intensities and the electrode types was 1 (Fig. 24). Since there was no 

significant time effect (P > 0.05) on the VAS data (VAS collected every 2 minutes during each 

stimulation session), the time data sets were collapsed together and analyzed for statistical 

significance. The VAS pain score was higher in the sponge-electrode (Mdn=2) than the MHC dry-

electrode (Mdn=1.5) (Z = 5.341, P = 1.41e-7), whereas across the stimulation intensities (1.5 mA 

(Mdn = 2), 2 mA (Mdn = 2)), the VAS pain score was comparable (Z = -0.567, P = 0.571) (Fig. 

25). 

2.5. Discussion 

We first defined a dry-electrode as 1) excluding any liquid of viscous electrolyte (as typical 

for conventional tDCS and HD-tDCS electrodes (Woods et al., 2016)) with the benefit of no 

accidental spread and no residue; 2) excluding any adhesive at the skin interface (common in 

TENS but rare for tDCS (Paneri et al., 2016)) either integrated into or around the electrolyte; and 

3) excluding any electrode preparation steps, even just saturation, except connection to the 

stimulator (which is an implicit step for a swapping disposable electrodes). A Multilayer Hydrogel 

Composite (MHC) dry-electrode design which satisfied these basic criteria was developed and 

then the electrode performance was verified in terms of current delivery and tolerability. For the 

conditions tested here, the MHC-electrodes performed sufficiently based on the improved VAS 

and comparable adverse event reporting, when compared to the conventional sponge-electrodes.  

Focused on tDCS technology, we did not test any additional stimulation waveforms in this 

study. But tDCS is considered demanding from an electrode design standpoint (Merrill et al., 2005) 

- for example, charge balanced pulses waveforms can be applied with conventional adhesive 

hydrogel electrodes while tDCS requires specialized electrodes (Paneri et al., 2016) - so our 
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success with tDCS is encouraging for additional waveforms. Still, only empirical testing can 

ultimately validate tolerability for each waveform and electrode design. In addition, we evaluated 

performance only below the hair line (SO positions) whereas tDCS is typically applied with at 

least one electrode above the headline (e.g. the common M1-SO montage). At a minimum, the 

MHC dry-electrodes may already be used below the hair line (e.g. SO) and a wet electrode above 

(e.g. M1). Noting the diffusivity of tDCS, other common montages, such as bifrontal positions 

(Brunoni et al., 2017; Sampaio-Junior et al., 2018), may be emulated by lowering the electrode 

below the hairline, without necessarily compromising brain current flow. Notwithstanding these 

questions, our results may encourage future work on the design and applications of dry-electrode 

stimulation. 
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Appendix 3: Adaptive current tDCS up to 4 mA 

3.1. Outline 

This Appendix describes the design and validation of electrodes and an adaptive controller 

to provide tDCS up to 4 mA. A version of this study has been published (Niranjan Khadka et al., 

2019b). We concluded that provided specific electrodes and controllers, adaptive 4 mA tDCS is 

tolerated and effectively blinded, with acceptability likely higher in a clinical population and 

absence of regular querying. Indeed, presenting participants with overt controls increases 

rumination on sensation.  

3.2. Introduction  

 With >1500 published reports in the past 5 years, transcranial direct current stimulation 

(tDCS) is an exhaustively investigated interventional neurotechnology (Woods et al., 2016), but 

using limited intensities. Circa 2000, canonical studies used 1 mA intensity (Nitsche and Paulus, 

2000) and earlier clinical trials tested 2 mA (Brunoni et al., 2012). Over the next two decades and 

across a breadth of indications, only current of 1-2 mA intensities have been tested (Grossman et 

al., 2018; Loo et al., 2018) with limited exceptions. tDCS with 2.5 mA has been used in select 

clinical populations (Benabid et al., 1991; Loo et al., 2018). A case report of 3 mA over an 

extended period was considered safe (Andrade, 2013, p.). In 16 healthy participants 3 mA tDCS, 

with topical anesthetic cream, was tolerated and produced intensity-specific neuromodulation 

(Mosayebi Samani et al., 2019). A review of early evaluations of tDCS circa 1960 identified a 

single instance of 3 mA, with local anesthetic used (Esmaeilpour et al., 2017). High-definition 

tDCS (HD-tDCS) was tolerated at 3 mA (Reckow et al., 2018) in a sample of older adults. 3 mA 

split across two HD-tDCS targets (1.5 mA each) was tolerated (Hill et al., 2018). A single session 
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of 4 mA tDCS was evaluated safe and tolerated in 3 stroke patients (Chhatbar et al., 2017; Nitsche 

and Bikson, 2017). Brief 4 mA tDCS was applied to participants under general anesthesia with 

Deep Brain Stimulation (DBS) electrodes (Chhatbar et al., 2017). Twenty sessions of Adaptive 4 

mA (using methods formulated here) was tolerated in 2 participants with major depression (Trapp 

et al., 2019).  

Evidence from animal studies suggest that 4 mA does not approach injurious limits (Bikson 

et al., 2016; Jackson et al., 2017). The past decade has introduced advancements in tDCS electrode 

(Hahn et al., 2013; Khadka et al., 2018a; Niranjan Khadka et al., 2019d; Truong and Bikson, 2018) 

and stimulator technology (Hahn et al., 2013; Truong and Bikson, 2018)that may increase 

tolerability at higher currents. Despite extensive evidence that 1-2 mA tDCS relevant electric field 

modulate neuronal function (Jackson et al., 2016; Krause et al., 2017; Liu et al., 2018; Nitsche et 

al., 2005), benefits of moderately increasing current intensity have been debated (Vöröslakos et 

al., 2018).  

We evaluated the total applied current and tolerability of three types of Adaptive 4 mA 

tDCS controllers; all types included adaptive ramps, impedance-based current mediation and a 

Relax-mode, but they differed in how Relax-mode was triggered: relying only on VAS pain score 

(condition 1: Adaptive 4 mA); relying on VAS pain score and participant activation of a Relax-

button (condition 2: Adaptive 4 mA with Relax-button); relying on VAS pain score and participant 

activation of a Relax-button over the course of the session (condition 3: Adaptive 4 mA with 

historical-Relax-button). Total applied current and tolerability of the three adaptive conditions 

were also compared against 2 mA tDCS (condition 4) and sham tDCS (condition 5). tDCS was 

controlled by a customized tablet-based stimulator which, in all conditions, queried VAS pain and 

provided an Abort-button (activation will stop stimulation), and only in condition 2 and 3, a Relax-
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button was provided (activation will transiently decrease based on a control algorithm). The ideal 

adaptive controller maximizes current delivery (up to 4 mA) while maintaining tolerability and 

avoiding dropouts.  

In a randomized single-blind parallel-group design, 50 healthy adults received three daily 

11-min (30 s ramp up + 10 min sustained period + 30 s ramp down) tDCS session of their assigned 

condition, while engaging in a distractor task. We report all tested conditions were well tolerated. 

While a priori providing participant with Relax-button may expect enhanced tolerability, we report 

the opposite (despite reduced current), presumably reflecting increased rumination of sensation. 

The tolerability of Adaptive 4 mA condition (without Relax-button) was not significantly different 

from 2 mA of Sham tDCS. These results do not bear on 4 mA tDCS without our controller or use 

of different electrodes. Noting we accessed a healthy population; our outcomes may be 

conservative for acceptability in clinical populations. These results support further investigation 

of Adaptive 4 mA with appropriate device design, electrodes, supervision, and a system for 

exploring still higher currents. Portions of these results were previously presented in abstract form 

(Borges et al., 2017; Niranjan Khadka et al., 2019a). 

3.3. Materials and Methods   

 This study spans experimental measurement in participants, and an analysis of current, 

impedance, and self-reported tolerability and efficacy data. 

3.3.1. Participants 

The study was conducted in accordance to the protocols and procedures approved by the 

Institutional Review Board of the City College of New York, CUNY. Fifty healthy participants 

(37 males and 13 females; age 19-34 years; mean age 24.7± 4.9) were enrolled in this participant-
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blind study. Participants with any evidence of skin disorders or sensitive skin (e.g. eczema, severe 

rashes), blisters, open wounds, burns including sun-burns, cuts or irritation (e.g. due to shaving), 

or other skin defects which compromise the integrity of the skin at or near stimulation locations 

were excluded from this study. All participants provided written informed consent to participate 

in the study. Participants were seated in an upright relaxed position throughout the stimulation. 

3.3.2. Sensation and adverse events 

Self-reporting questionnaires completed by the participants before and after each session 

(Table 1) assessed the extent of adverse events including headaches, nausea, neck pain, scalp pain, 

tingling, burning sensation, itching sensation, sleepiness, trouble concentrating, and dizziness on 

an intensity rating scale from 1- 4 (1 = absent, 2 = mild, 3 = moderate, and 4 = severe). In addition, 

participants quantified their experienced adverse events in relationship to tDCS on a scale from 1 

– 5 (1 = none, 2 =remote, 3 = possible, 4 = probable, and 5 =definite). VAS (Visual analogue scale) 

pain score (scale: 0 - 10; 0: no pain, 10: intolerable pain) was collected every 2 min during the 

stimulation via a built-in VAS graphical user interface (GUI) of the tablet-based stimulator.  
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Table 2: Summary of participant reported adverse events as intensity and perceived relationship to 

tDCS. 

3.3.3. Participant feedback for stimulation 

The participants can provide feedback through the stimulation tablet GUI with two buttons: 

(1) The Relax-button which transiently decreases the current to minimize the participant's 

discomfort- available in condition 2 (Adaptive 4 mA with  Relax-button) and condition 3 

(Adaptive 4 mA with historical-Relax-button); (2) The Abort-button which linearly ramps down 

the tDCS current to 0 mA at the rate of 0.1 mA per 3 s till the session terminates, was available in 

all conditions. All participants were instructed that they could activate the Abort-button at any time 

during the stimulation if, they experienced any discomfort, or their VAS pain score was > 7, or 

they wished to stop stimulation for “any reason or no reason at all”. In addition, participants in 

condition 2 (Adaptive 4 mA with Relax-button) and condition 3 (Adaptive 4 mA with historical-

Relax-button) were instructed that the Relax-button could be activated in an event of VAS pain 

score > 5. Effectively, participants were permitted to activate the Relax-button as often as they 

wanted regardless of pain perception, which could result in an excessive Relax activation (see 

Results). Participants were also prompted every 2 min to score VAS pain. Finally, the Abort or the 

Relax-mode were automatically triggered, if the reported VAS pain score was 7 or higher (Abort), 

and 5 or higher (Relax-mode) respectively. 

3.3.4. Adaptive 4 mA Controller 

All conditions where the current target was 4 mA used an adaptive controller and logic (i.e. 

in none of the cases current simply ramped up linearly to 4 mA). The Adaptive 4 mA controller 

includes parallel functions (Fig. 26) of: 1) step-wise ramp up; 2) Impedance-based current 
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moderation; 3) Relax-mode current moderation; 4) Abort trigger. The overall rationale for this 

controller (testing it was the primary objective of this study) was to maximize current delivery 

while maintaining tolerability.  

When stimulation is initiated, the incremental ramp up initiates with a linear ramp up to 2 

mA over 30 s. Impedance-based current moderation not by the Relax-mode is active during this 

first 30 s. Current is increased from 2 to 4 mA in a step-wise fashion where current is sustained 

for 15 s and then ramped up in 0.5 mA increments over 15 s. With each increment taking 30 s, and 

4 increments from 2 to 4 mA, the minimum time for current to attain 4 mA from 2 mA increment 

is 120 s. The minimum time to start stimulation at 4 mA is therefore 150 s. 

The impedance-based current mediation is active during all times of stimulation. If 

impedance is > 20 k  threshold during the ramp up to 2 mA, or > 20 k  threshold during the ramp 

from 2 mA to 4 mA, or >10 k  threshold at the 4 mA target, then current is reduced proportionally 

to the resistance increase above the threshold. If impedance decreases below this threshold, 

impedance-based mediation stops. 
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Figure 26: 4 mA Adaptive Algorithm and Logic for Current Control. The current intensity transiently 

increases over time up to 4 mA with 15 s intervals of constant current phase followed by an increment of 

current intensity by 0.5 mA over a duration of 15 s. The Relax-button lowers the current for 10/15 s 

(depending upon the stimulation conditions) to the last sustained current intensity and then the current 

creeps back up after 15 s. The Abort-button terminates stimulation session and ramps down the current to 

0 mA over a period of 30 s. The goal of the cyclical logic diagram is to obtain a well-tolerated optimal 

current intensity. (Inset) Optimized electrode with 5 rivets. FEM simulation of current streamlines showing 

current density is distributed. 

The Relax-mode is triggered either automatically by a VAS pain score of > 5 or participant 

activation of the Relax-button, when available. In the simplest implementation, when triggered, 

the Relax-mode ramps down the current by a 0.5 mA to the last sustained increment current for 15 

s (Condition 1, Adaptive 4 mA ; Condition 2, Adaptive 4 mA with  Relax-button) or 10 s 

(Condition 3, Adaptive 4 mA with historical- Relax-button), sustains the reduced current for a 
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minimum of 15 s, and then ramps up the current back to the initial value over 15 s. Relax-mode 

can be triggered during the ramp up where it effectivity throttles, but does not stop the general 

increase. This mode can also be activated repeatedly except during the 15 s or 10 s ramp down and 

when otherwise disabled (during the first 30 s ramp up). Triggering a second Relax-mode while 

the current is ramping down from the first Relax-mode has no effect on the prior ramp down. In 

the adaptive 4 mA (where Relax-mode is only activated automatically) and adaptive 4 mA with  

Relax-button, the duration of reduced current is sustained for fixed 15 s, while in the adaptive 4 

mA with historical- Relax-button, the duration of reduced current is sustained according to 

equation 1. 

Duration of current sustained at dampened level (s)=30*[no.of times Relax-button  activated]– 15  

(1) 

As aforementioned, VAS pain score > 7 or participant activation of Abort-button, when 

available, automatically triggered the Abort. Once triggered, current ramps down to zero current 

level and the sessions ends. Stimulation Conditions 

Participants were randomly assigned to one of the five treatment conditions: Condition 1, 

Adaptive 4 mA stimulation; Condition 2, Adaptive 4 mA with Relax-button; Condition 3, Adaptive 

4 mA with historical-Relax-button; Condition 4, 2 mA tDCS; Condition 5, Sham. A M1-SO 

montage was used with anode placed over the left primary motor cortex (C3: EEG 10-20) and 

cathode placed over the contralateral-supraorbital (Fp2: EEG 10-20) for all treatment conditions. 

Current was administered for 11 min (including 30 s of ramp up and down each and a 10 min 

sustained period) using a specialized device (Soterix Medical Inc., New York, USA; Ybrain Inc, 

Seongnam-si, Republic of Korea) of a tablet-based tDCS stimulator with GUI participant interface, 
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snap-headgear (which ensured placement; (Knotkova et al., 2019)), and single-use pre-saturated 5 

x 5 cm snap electrodes EasyPad, Soterix Medical Inc., New York, USA).  

The 11 min sessions were considered more than long enough to encompass period of 

impedance transients (Hahn et al., 2013; McFadden et al., 2011; Woods et al., 2016) and maximal 

self-report sensation (Greinacher et al., 2018). This study was not intended to resolve acute or 

lasting changes in brain function. A parallel-group design was used to avoid confounds from 

participants recognizing difference across conditions (e.g. being provided a Relax-button only in 

some conditions) and increase reliability or testing for changes across repeated sessions. Three 

repeated sessions, with at least one day interval, were considered sufficient to resolve any 

immediate (e.g. after one session) change in tolerability based on repetition (session number) 

across conditions. Scalp current and impedance were automatically queried in real-time upon the 

onset of stimulation by the smart stimulator and stored in cloud for later analysis. 

a. Condition 1, Adaptive 4 mA: In this mode of stimulation, the current ramps up to 4 mA 

using an incremental ramp (Fig. 27A). The ramp up and sustained phase are limited based 

on impedance and VAS pain score (as needed) (Fig. 27B). The incremental ramp starts 

with a ramp up to 2 mA over 30 s during which Relax-mode is disabled, and then ramps 

up to 4 mA over a minimum (if Relax-mode is not triggered) of 120 s. The 2 to 4 mA ramp 

up is step-wise according to the adaptive controller logic (if Relax-mode is not activated): 

the current at 2 mA is sustained for 15 s and then linearly increases the current to 2.5 mA 

over 15 s, with this rule is repeated till the intended 4 mA current intensity is attained (Fig. 

26). The adaptive 4 mA ramp up is thus a total of 150 s. In the participant GUI, the Abort-

button is always available, but in this condition the Relax-button is not. Therefore, in the 

Adaptive 4 mA condition, the Relax-mode current mediation can only be triggered 
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automatically by a VAS pain score of > 5 (Fig. 27C). As in all conditions, Abort is 

automatically triggered by a VAS pain score > 7. 

 

Figure 27:  Current waveform, impedance, VAS pain score, and lexical decision task for 

Adaptive 4 mA condition. Participants per condition are color coded. Current ramps up and 

maintains to a 4 mA target with adaptive logic, (automatic only) VAS pain score-based Relax-

mode activation, and impedance-based current moderation. (A) Current applied. There were 2 

dropouts during session I (green and blue traces). Also, in session I there were 2 impedance-based 

current reduction (red and brown traces). Average traces (dashed line) and current values without 

the parenthesis represents condition including dropouts. Values within parenthesis represent 

average session current excluding dropouts. (B) Impedance. Average impedance across sessions 
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was < 10 kΩ. (C) Participant VAS pain score collected before and every 2 minutes during 

stimulation. Average VAS pain score across sessions was ≤ 3 with no instance of VAS pain score 

> 5. (D) Correct response range for the lexical decision task, scored every 2 minutes during 

stimulation, was 89-100 %. 

 

b. Condition 2, Adaptive 4 mA with Relax-button: This mode is similar to Adaptive 4 mA 

with the addition of a Relax-button that participants can activate ad libitum, though in 

principle they are instructed to do so only under significant discomfort (VAS pain score > 

5) (Fig. 28). After the 30 s ramp up to 2 mA, activating Relax-button triggers the transient 

Relax-mode current mediation. Relax-mode is also automatically activation by a VAS pain 

score > 5 (Fig. 28C). The Abort-button is available.  
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Figure 28: Current waveform, impedance, VAS, and percentage of correct response for the 

Adaptive 4 mA with Relax-button condition. Participants per condition are color coded. Current 

ramps up and maintains to a 4 mA target with adaptive logic, automatic (VAS pain score-based) 

and participant activated Relax-mode, and impedance-based current moderation. (A) Current 

applied. Reductions in current are associated with participant Relax-button activation used by a 

minority of participants (but repeatedly). A single instance of VAS pain score > 5 was reported at 

the end of session III. (B) Average impedance was < 10 kΩ for all participants across sessions. (C) 

Average VAS score collected before and every 2 minutes during stimulation, across sessions was 
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≤ 2. Once instance of VAS pain score > 5 at the end of session III (green dot). (D) Range of correct 

response of lexical decision task, scored every 2 minutes during stimulation was 86 -100 %. 

 

c. Condition 3, Adaptive 4 mA with historical-Relax-button: This mode is similar to Adaptive 

4 mA with Relax-button, however, after completion of a Relax-mode triggered ramp down 

(10 s), the current is sustained at this dampened level for a time that increases with the 

number of prior Relax-mode activation (equation 1) (Fig. 29). For example, activation of 

Relax-mode twice (by activating Relax-button or VAS pain score > 5) will sustain the 

reduced current for 45 s. The Abort-button is available. 
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Figure 29: Current waveform, impedance, VAS, and lexical decision task for Adaptive 4 mA 

with historical-Relax-button condition. Participants per condition are color coded. Current ramps 

up and maintains up to a 4 mA target with adaptive logic, automatic (VAS pain score-based) and 

participant activated Relax-mode, and impedance-based current moderation. With increasing 

number of Relax-button activation, the duration of current moderation increases. (A) Current 

applied. Reductions in current are associated with participant activation of Relax-button and there 

were 9 instances of VAS pain score > 5 triggering an automatic Relax-mode. (B) Average 

impedance was < 10 kΩ. (C) Average VAS pain score, collected before and every 2 minutes during 

stimulation, across sessions was ~ 3. The highest VAS pain score was 6 reported by 4 participants 

(green, light blue, red, dark blue), a total of 9 instances. (D) Percentage of current response of the 

lexical decision task, scored every 2 minutes during stimulation, ranged from 80-100 %. 

 

d. Condition 4, 2 mA tDCS: This mode is a conventional 2 mA tDCS mode of stimulation 

but with impedance-based current mediation (Fig. 29). Current ramps up linearly to 2 mA 

over 30 s, and is sustained for 10 min, before ramping down linearly over 30 s. The Abort-

button is available. 
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Figure 30: Current waveform, impedance, VAS, and lexical decision task for 2 mA 

stimulation condition. Participants per condition are color coded. Current ramps up and maintains 

to a 2 mA target with impedance-based current moderation (A) Current waveform. (B) Impedance. 

There was one session with impedance-based current reduction in session II (blue trace). (C) 

Average VAS pain score was < 2 across all sessions with no instance of VAS pain score > 4. (D) 

Range of correct response of the lexical decision was 85-100 %. 

 

e. Condition 5, Sham stimulation: In this conventional mode of sham stimulation, current 

ramps up linearly to 2 mA over 30 s and then immediately ramps down over 30 s (Fig. 31). 

The Abort-button is available.  
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Figure 31: Current waveform, impedance, VAS pain score, and lexical decision task for Sham 

stimulation condition. Participants per condition are color coded. Current ramps up and down 

from a 2 mA target. (A) Current waveform. There was one abort each in session II and session III. 

(B) Impedance. Relatively higher impedances reflect depence on test current level. There was one 

impedance-based current reduction during the ramp up-down in session II. (C) Average VAS pain 

score, collected before and every 2 minutes during stimilation, was ≤ 1 across all sessions. (D) 

Range of correct response of the lexical decision, scored every 2 minutes during simulation, was 

84-100 %.                                                    

3.3.5. Lexical decision task 
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During the stimulation session, the participants engaged in a lexical decision task 

(Branscheidt et al., 2018) as a distractor (Fig., 27D, 28D, 29D, 30D, 31D). On the computer screen 

separate from the tDCS device GUI, participants were presented with a mixture of words (e.g. 

canorous) and pseudowords (nonsense strings that represent the phonotactic rules of a language, 

like “trud” in English) and asked whether the presented stimulus was a word or not. The lexical 

decision task was paused every 2 min when participants were prompted to report the VAS pain 

score. 

3.3.6. Statistical analysis 

Normality test of VAS score and adverse events responses were tested using Shapiro-Wilk 

tests with Lilliefors significance correction. A corresponding parametric (ANOVA) or non-

parametric (Kruskal-Wallis test) determined the significance of the data. When significant, post-

hoc pairwise comparison was conducted using parametric Tukey’s HSD test or non-parametric 

Dunn’s test to find the difference between groups. A critical value (P) of < 0.05 was accepted as a 

significant difference between the groups. MATLAB function “rmoutliers” detected and removed 

outliers from the data based on mean (outlier defined as an element of a given dataset more than 3 

standard deviations from the mean). Note that no outliers were detected for any primary outcome 

measures or for statistical test, but outliers were identified on lexical decision task (reflecting 

participants not engaging in the task) and were removed for graphing purposes. 

3.4. Results 

 A total of 144 treatment sessions were completed. No serious adverse events were reported 

in the entire study. There were two aborts in the first session of the adaptive 4 mA waveform (no 

Relax-button) condition. In Sham stimulation (condition 5), there was one abort in session II and 
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one abort in session III. Per study design, participants who activate Abort-button withdrew from 

the rest of the sessions, regardless of their willingness to continue. Across all conditions and 

sessions, there were no instances of VAS pain score  7 (including in the participants who 

activated Abort-button), which would trigger an automatic Abort. Adverse events, VAS pain 

scores, lexical decision task performance, current, and impedance across every sessions of the 

study conditions were reported.  

3.4.1. Current and Impedance 

We analyzed the current intensities, both including and excluding the dropouts for the 

Adaptive 4 mA (no Relax-button) condition. Current intensities including the dropouts for the 

Adaptive 4 mA condition for sessions I, II, and III were 3.42 ± 0.36, 3.20 ± 0.00, and 3.20 ± 0.00, 

respectively (Fig. 27). Excluding the dropout, the current intensities for this session I, II, and III 

were 3.91 ± 0.03, 4.00 ± 0.00, and 4.00 ± 0.00, respectively. There were no instances of VAS pain 

score > 5 (which triggered an automatic Relax-mode) across sessions. There were 2 instances 

across sessions where impedance-based current mediation was active for at least 1 s (Fig. 28). 

The current intensities (mean ± SD) for adaptive 4 mA with Relax-button were 3.86 ± 0.12, 

3.72 ± 0.06, and 3.60 ± 0.06 for session I, II, and III, respectively. This reduction in current from 

the 4 mA target reflected Relax-button activation by a minority participant. These participants 

activated Relax-button repeatedly, while not reporting high VAS pain score. Across sessions, there 

was 1 instance of VAS pain score > 5. There was 1 instance across sessions where impedance-

based current mediation was active for at least 1 s. No participant activated the Abort-button. 

For Adaptive 4 mA with historical-Relax-button, the current intensities for session I, II, 

and III were 2.99 ± 0.07, 2.91 ± 0.07, and 3.10 ± 0.07, respectively. This reduction in target current 
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(4 mA) reflected Relax-button activation. There was no Abort-button activation and no instance 

of impedance-based current mediation across sessions. Across sessions, there were 9 total 

instances of VAS pain score > 5 (which triggered automatic Relax-mode).  

For 2 mA stimulation, the current intensities for session I, II, and III were 2.00 ± 0.00, 1.98 

± 0.00, and 2.00 ± 0.00, respectively. The reduction in current for session II reflects 1 instance of 

impedance-based reduction. For 2 mA stimulation condition, there were no instance of VAS pain 

score > 5.  

In Sham stimulation, there were no instance of VAS pain score > 5 (though as noted, 2 

dropouts following Abort-button activation) and 2 instances across sessions in which impedance-

based current mediation was active (always during the ramp up/down) 

Average impedance in all study conditions except the sham condition was < 10 kΩ across 

sessions. For Sham stimulation, the average impedance excluding ramp down was > 20 kΩ across 

sessions, reflecting the nature of impedance measurement (not unusual conditions).   

A two-way ANOVA tested the significant difference in the current intensities across 

different treatment groups. Including the dropouts (of the Adaptive 4 mA and Sham conditions), 

there was a statistically significant difference in group means among the study conditions, F (4, 8) 

=868.84, P < 0.05. The mean current intensities across each study conditions were significantly 

different from all others (Tukey’s HSD test; P < 0.05). In this analysis including the dropouts, 

Adaptive 4 mA with Relax-button condition has more current for each session (I: 3.86 ± 0.12; II: 

3.72 ± 0.06; III: 3.60 ± 0.06) compared to other conditions. Interactions between the session 

number and study condition on current intensity was not significant, F (2,8) = 1.5633, P > 0.05. 

Excluding the drop-outs, the main effect of study conditions on mean current intensity was 
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significant (F (4,8) = 1126, P < 0.05). Mean current intensities across conditions were different 

from all others (P < 0.05). In this analysis excluding the dropouts, Adaptive 4 mA condition 

provided significantly more current in all three sessions (: 3.91 ± 0.06; II: 4.00 ± 0.00; III: 4.00 ± 

0.00; P< 0.05) than Adaptive 4 mA with Relax-button condition. There was no significant 

interaction between the session number and the study condition (F (2,8) = 0.16, P > 0.05). 

3.4.2. Adverse Events 

Frequently reported adverse events were skin itching, tingling, and mild burning sensations 

(see supplemental Fig. 33 and 34). A non-parametric Kruskal-Wallis tested the significant 

difference in adverse events among the study conditions. There was no significant difference in 

the adverse events intensity among the five study conditions (χ2 = 2.3, df = 4, P > 0.05). However, 

across study conditions, adverse events intensity in relationship to tDCS was significantly different 

(χ2 = 11.6, df = 4, P < 0.05). Conventional 2 mA (mean rank = 21.0) and Adaptive 4 mA (mean 

rank = 25.65) conditions both had lower adverse events in relationship to tDCS (P < 0.05) than the 

Adaptive 4 mA with Relax-button (mean rank = 33.85) condition. Sham condition had lower 

adverse events in relationship to tDCS (P < 0.05) than adaptive 4 mA with historical-Relax-button 

and adaptive 4 mA with Relax-button conditions. 

3.4.3. VAS pain score 

The VAS pain score was statistically significant amongst the stimulation conditions (χ2 = 

49.71, df = 4, P < 0.05, Kruskal-Wallis test; VAS mean rank: Sham (34.23); Adaptive 4 mA with 

historical-Relax-button (106.88); Adaptive 4 mA with  Relax-button (92.52); 2 mA (64.68); 

Adaptive 4mA waveform (79.18)). VAS pain score for the Sham condition was significantly lower 

(P < 0.05) than the Adaptive 4 mA, Adaptive 4 mA with Relax-button and the Adaptive 4 mA with 
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historical-Relax-button.  Conventional 2 mA tDCS had lower VAS pain score than Adaptive 4 mA 

with historical-Relax-button. There was no significant difference among the other remaining 

stimulation conditions (P > 0.05). Interactions between the session number and stimulation 

condition on VAS pain score was not significant (χ2 = 0.4, df = 2, P > 0.05) and didn’t vary 

significantly across sessions for all stimulation conditions (P > 0.05). 

3.4.4. Lexical Decision task 

The subjective response of the lexical decision task for each study condition was reported as 

correct response percentage across sessions (min and max) as: Adaptive 4 mA (max: 100%; min: 

89%), Adaptive 4 mA with  Relax-button (max: 100%; min: 86%), Adaptive 4 mA with historical-

Relax-button (max: 100%; min: 80%), 2 mA tDCS (max: 100%; min: 85%), Sham (max: 100%; 

min: 84%). The average correct response percentage was > 90 % across all stimulation conditions. 

Our study was not designed to resolve condition-specific effects on task; indeed, in some cases 

participants temporarily stopped engaging in the task (e.g. distraction, boredom) resulting in 

artifactual score reduction. 

3.5. Discussion 

 Our results provide evidence in support for the tolerability of Adaptive 4 mA tDCS and so 

the feasibility of trials to test efficacy of higher dose tDCS. We do not identify a significant 

difference in subjective tolerability (VAS, adverse events) between Adaptive 4 mA, 2 mA, and 

Sham conditions. Tolerability across these conditions is also broadly consistent with prior reports 

using 2 mA (Antal et al., 2017; Fertonani et al., 2015; Kessler et al., 2012; Khadka et al., 2018a; 

Reckow et al., 2018). Our results should only be interpreted inclusive of our specific tDCS 

techniques including current escalation algorithm in 4 mA conditions (Fi. 24), impedance-based 
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current moderation and high-performance single-use electrodes across conditions, and other study 

design specifics discussed next. 

Participants were informed that the purpose of this study was to evaluate their discomfort 

during the session and investigate the tolerability aspects of tDCS and were queried regularly on 

VAS pain score. This design, despite the distractor task, may have encouraged rumination on 

sensation thereby compromising self-reported tolerability. Indeed, in the two conditions where a 

Relax-button was offered to the participants (Adaptive 4 mA with Relax-button and Adaptive 4 

mA with historical-Relax-button), tolerability was poorer compared to both Adaptive 4 mA and 

even conventional 2 mA. A clinical population may be more motivated and accepting (Aparício et 

al., 2016; Moffa et al., 2017) of mild adverse effects than our cohort of healthy young adults. 

Indeed, in a pilot clinical trial of Adaptive 4 mA, 20 sessions were all completed and tolerated 

(average VAS pains score of 1.1-1.6, max 3) in two participants with major depression (Trapp et 

al., 2019) – Relax-button (and Abort-button) were only in a physician directed controller, with no 

instance of request to activate by participants.   
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Figure 32. Concept for cloud based machine-learning Adaptive tDCS optimization. Optimized dosage 

and tolerability profile are maintained for efficacy of tDCS using an Adaptive Logic Waveform tailored 

from participant’s manual feedbacks (VAS pain score, Abort-button, or Relax-button activation), automatic 

VAS pain score-based Relax-mode and Abort, system impedance (skin impedance (Hahn et al., 2013; 

Khadka et al., 2015a) and electrode impedance (Khadka et al., 2015b, 2015a), and biomarkers (EEG, EKG, 

galvanic skin response, eye tracking etc.). This waveform data is further processed via a cloud-based 

machine learning step to train, test, and validate the target current intensity for individualized tDCS. A 

smart cloud based current regulator device integrates the current output and other data collected from the 

participants. 

We are not aware of prior tDCS studies with Abort or Relax buttons being overtly presented 

to participants in an integrated GUI device. All four study-dropouts followed activating Abort-

button - two each in the Sham and Adaptive 4 mA conditions – never associated with especially 

high VAS pain score. Relax-mode activation was also not well correlated with VAS pain score 

and not reflecting instructions to activate Relax-button at VAS pain score > 5. Activation of Relax-

button by some participants approached the maximum allowed iterations under Adaptive 4 mA 

with Relax-button (~10 times) and Adaptive 4 mA with historical-Relax-button (~4 times) 

suggesting continual Relax-button activation, even at current below 1 mA. Thus, when and how 

to include these features in Adaptive 4 mA trials is complicated.  

We report no significant difference in VAS pain score or adverse events between Sham 

condition, 2 mA, and Adaptive 4 mA conditions. Given general discussions on the reliability of 

sham protocols in tDCS (Ezquerro et al., 2017; Fonteneau et al., 2019; Greinacher et al., 2018; 

Kessler et al., 2012; Palm et al., 2013; Turi et al., 2019), this warrants brief commentary. Foremost, 

the reliability of sham depends on tolerability of the active tDCS arm which is determined by 

electrode design and application protocols. Here, we used electrodes optimized for tDCS, that are 
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single-use and pre-prepared (saturated, no assembly) for consistency (Fig. 32). Second, the success 

of a sham arm in any given experiment is predicated on the overall study design (including how 

blinding success is defined) and not only perfectly replicating side-events. Indeed, since current 

evidently produces sensation, under sufficiently persnickety experimental design (including if we 

significantly increased participant number), participants will resolve differences between any 

doses. 

The system developed and verified here, using Adaptive ramp, impedance-based current 

moderation, Relax-mode, and optimized electrodes may support testing of still higher current 

intensities, including in clinical populations. Providing participants control over the tDCS dose has 

implications for trial design - but dose titration, whether by clinician or patients, is universal across 

neuromodulation approaches (Perera et al., 2016; Riederer et al., 2015) with the exception of tDCS. 

Interestingly, our trial shows providing participants with such control does not necessarily enhance 

tolerability. The present study on tolerability is ambivalent to the benefits of higher currents 

(Esmaeilpour et al., 2018) but provides a system supporting dose-response studies that underpin 

intervention optimization, which have been curtailed to a limited range in tDCS. 
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Supplementary figures 

 

Figure 33: Adverse events for all stimulation conditions 
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Figure 34. Adverse events for all stimulation conditions in relationship to tDCS. 
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Appendix 4: Principles of Within Electrode Current Steering 

(WECS) 

4.1. Outline 

 This Appendix validates a novel method called Within Electrode Current Steering (WECS) 

to adjust current between electrodes not in contact with the tissue but rather embedded in an 

electrolyte on the body surface. A version of this study has been published (Khadka et al., 2015b). 

We demonstrated the principles of WECS using an exemplary electrode design typical for tDCS 

and extremes of current steering through within the electrode, without altering current distribution 

in brain target.  

4.2. Background 

Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique that 

involves non-invasive delivery of weak direct current (1-2 mA) to the brain. Conventionally, tDCS 

employs rectangular saline-soaked sponge pads (25-35 cm2) placed on the scalp, with an internal 

electrode connected to the current source.  Impedance measurement across the current source 

output may fail to recognize non-uniform conditions at the skin interface such an uneven content 

or saturation. tDCS is well tolerated with minor adverse effects limited to transient skin irritation 

(Nitsche et al., 2003). Nonetheless, technology that enhances the sophistication of electrode design 

would further enhance tolerability and promote broad (e.g. home) use.  

 In order to enhance the reliability and tolerability of tDCS, we describe a novel method 

called Within Electrode Current Steering (WECS). This concept is distinct from (across electrode) 

current steering, as developed for implanted devices such as Deep Brain Stimulation (DBS), where 
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current is steered between electrodes that are each in contact with tissue, with the goal of changing 

desired brain regions that are activated (Butson and McIntyre, 2008). Within electrode current 

steering adjust current between electrodes not in contact with tissue but rather embedded in an 

electrolyte on the body surface. The goal here is not to alter brain current flow, but rather 

compensate for non-ideal conditions at the surface. This technology leverages our technique for 

independently isolating electrode impedance and over-potential during multi-channel stimulation 

(Khadka et al., 2015a).  

 With a novel approach, the objective of this first paper was to demonstrate the principles 

of WECS using an exemplary electrode design typical for tDCS (4 rivet-electrode sponge) and 

extremes of current steering (from uniform to single rivet).  Through finite element modeling 

(FEM) of this illustrative case, we validate the underlying assumptions of WECS: steering current 

within electrodes but without altering current distribution in brain target.  Having presented this 

novel idea through an exemplary case, this report supports future studies optimization of electrode 

design, automation of algorithms to control current (including using impedance measurement), 

and ultimately validation under experiment conditions. 

4.3. Methods 

4.3.1. Principles 

WECS applies to non-invasive electrical stimulation with two or more electrodes (metal-rivets 

embedded in an electrolyte (saline or gel)) on the skin (Poreisz et al., 2007). Each electrode is 

independently powered by a current source. Success in implementation of WECS depends on 

geometry and material of each component of the assembly and an algorithm for current steering 

between electrodes. Here our goal is only to demonstrate the principle of such application through 
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a case design. Using a multi-scale model including realistic electrode and head geometry (Fig. 

35A), we showed how current flow in the brain (target) is independent of current-steering at the 

electrode. 

4.3.2. Electrode design 

To illustrate implementation of WECS, we use a modified tDCS saline-saturated sponge 

(7x5x3cm, σ = 1.4S/m). The top face of the sponge is perforated with cylindrical Ag/AgCl 

electrodes (dout= 1.5cm, din= 0.61cm, extrusionouter =1cm, and extrusioninner = 0.50cm σ = 

5.99E7S/m) which align with the top surface and protrude through half the sponge thickness (Fig. 

35A). The electrodes are exposed on all surfaces and connect the lead (not shown) via male 

receptacles at the top. In principle, changing the diameter and distance between the electrodes, the 

distance between the electrodes and skin, or electrolyte conductivity will discriminate how current 

from the electrode reaches the skin (Kronberg and Bikson, 2012), but here our goal is to illustrate 

WECS principles in one fixed exemplary geometry. This electrode assembly is placed on the scalp 

(Fig. 35A), in our example over the motor region (M1). A return electrode is placed at over the 

contra-lateral orbit and is not of concern here. 

4.3.3. Current steering 

The electrode assembly receives a fixed total current of 1 mA (with -1 mA collected by the 

return electrode). The current is actively divided across the electrodes within the electrode 

assembly. Thus, under an “even” current split, 0.25 mA is delivered to each electrode.  Under a 

“partially uneven” current split 0.5, 0.25, 0.25, and 0 mA current is delivered and under a “fully 

uneven” split 1.0 mA is delivered to one electrode and 0 mA current to the remaining electrodes. 

4.3.4. Computational methods 
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WECS was modeled using a previously develop tDCS FEM workflow (Sadleir et al., 2010). A 

multidomain geometric mesh was generated of a head using a combination of 3D imaging data 

and computer aided design electrodes (Simpleware, Exeter, UK). The mesh was imported into a 

FEM solver (COMSOL, Burlington, MA), where conductivities (Kronberg and Bikson, 2012)were 

assigned to each tissue/material domain. Boundary conditions were applied (cathode ground, 

inward current density on rivets, insulated on other external surfaces), and the Laplace equation 

solved for Voltage (and in turn electric field and current density). 

4.4. Results 

To illustrate the principles of WECS, we considered a simplified electrode assembly with 

electrodes inside a saline saturated sponge, placed on the scalp (Fig. 35A), under two extremes of 

electrode current distribution conditions (“even” and “fully uneven”) and one intermediary 

electrode current distribution (“partial uneven”) (Fig. 35B). Streamline plots (Fig. 35C) of within 

sponge current flow demonstrate the distribution of current flow in each case from the electrodes 

to the skin surface. As expected, we found symmetry when steering current from fully uneven to 

even current application, but in each case current spreads across the electrode-assembly. At the 

electrode-assembly interface with the skin, the current density distribution varied only 

incrementally across conditions (e.g. less than would be expected with even minor changes in 

electrode assembly or skin properties (Kronberg and Bikson, 2012)) with no significant difference 

in peak current density (~2 A/m2; typically predicted around edges).  Thus, with this electrode 

assembly design even if three of four electrodes failed, current steering to the one functional 

electrode would not significantly increase current density in the skin; hence, not effecting 

tolerability.   
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Figure 35: FEM analysis of electrode assembly to validate the underlying assumption of within 

electrode current steering. (A) Represents a montage with electrode assembly. (B) “Even”, “Partially 

Uneven”, and “Fully Uneven” current injection mode through metal rivets of an electrode assembly 
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keeping total current constant. (C) Illustrates streamline current flow from each metal rivets under all three 

current injection conditions. (D) Current density observed at the scalp electrode interface. (E) Presents an 

electric field distribution found in the brain target. 

 Furthermore, we predicted that the electric field at the brain under all three cases was 

essentially identical (Fig 35E).  Therefore, using this electrode-assembly design, current can be 

steered across electrodes without effecting current distribution in the brain target.  We note the 

goal of WECS in contrast to current-steering for implant, is not to alter current flow at the target 

(neuromodulation). 

4.5. Discussion 

Within Electrode Current Steering (WECS) is proposed here as a novel method to increase 

the tolerability of tDCS without altering underling neuromodulation. Thus, using an exemplary 

design, we illustrated how current flow in the brain can remain unaltered (Fig 35E) even as current 

is steered between electrodes inside the electrode-assembly.  WECS can be generalized to other 

noninvasive electrical stimulation technique and potentially to invasive techniques where an 

artificial or natural electrolyte barrier exists between the electrode and the tissue.  For invasive 

techniques, WECS may complement traditional current steering but be used to protect electrode 

and tissue from injury. Success of this approach depends on the appropriate design of the electrode 

assembly (Fig. 35A) and the algorithm used to steer current between electrodes – topics to be 

considered in future design efforts. 

 The essential principles in WECS design relate to producing functional equivalency 

between current arriving at each electrode as far as current entering the brain target.  Specifically, 

regardless of how a total amount of current is distributed between electrodes, brain current flow 
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is unchanged.  A further consideration is how current flow at the skin (scalp) is altered.  On the 

one hand, current steering should avoid significant increases in current density at the skin, 

maintaining as uniform a current density at the skin as practical. On the other hand, when non-

ideal conditions at the electrode or skin arise, including increasingly non-uniform current flow or 

electrode failure, current steering may be used to compensate.  For example, if a given electrode 

fails and a high over-potential at the electrode is detected, current may be steered to other 

electrode to minimize electrochemical hazard (Poreisz et al., 2007)or if one region of the sponge 

becomes dry during use, current may be diverted to the most distant electrodes.  

 Inherent to the above concept is the ability to detect non-ideal conditions and program 

appropriate corrective measures.  The simplest feedback is the voltage at each current source, 

which using signal processing and “test signals” (superimposed currents not used for 

neuromodulation) or a “sentinel electrode” (not used for DC) may be used to calculate single 

electrode impedance [3]. Additional information can be derived by using test signals to isolate 

the impedance of the sponge/electrolyte between the electrodes, generating a prediction for 

current density patterns that can be corrected.   
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Appendix 5: Temperature Increases by kilohertz frequency Spinal 

Cord Stimulation 

5.1. Outline 

 This Appendix test the hypothesis that kilohertz frequency spinal cord stimulation (kHz-

SCS) increases local tissue temperature by joule heat, which may influence the clinical outcomes. 

A version of this study has been published (Zannou* and Khadka* et al., 2019). We concluded 

that spinal tissue heating may impact short and long-term outcomes of kHz-SCS, and even as an 

adjunct mechanism, suggests distinct strategies for lead position and programming optimization.  

5.2. Introduction 

The emergence of kilohertz frequency (1-10 KHz) spinal cord stimulation (kHz-SCS)(Al-

Kaisy et al., 2014; DiMarco and Kowalski, 2013; Fingas et al., 2007; Kinfe et al., 2016; Lempka 

et al., 2015; Russo and Van Buyten, 2015; Tiede et al., 2013) for the treatment of neuropathic pain 

has engendered studies on new mechanisms of actions (MoA) (Bicket et al., 2016; Lee et al., 2011; 

Lempka et al., 2015; Miller et al., 2016; Yearwood et al., 2010). Divergent clinical observations 

for conventional rate SCS and kHZ-SCS suggest difference in MoA which could in turn inform 

distinct programming optimization strategies. Notably, kHZ-SCS can provide an analgesic and 

side-effects profile distinct from conventional frequency (~100 Hz) SCS (Bicket et al., 2016; 

Kapural et al., 2016). For example, kHz-SCS does not produce the paresthesias associated with 

dorsal column activation in conventional SCS, and recent studies seemingly rule out direct 

activation of dorsal column fibers as the primary mechanism of action of kHz-SCS pain relief 

(Crosby et al., 2017; Song et al., 2014). Wash-in time for the therapeutic benefit of conventional 
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rate SCS is on the order of minutes, while responses to wash-in over a longer period (Al-Kaisy et 

al., 2014). Further indicating distinct MoA, kHz-SCS waveforms involve simultaneous decrease 

in pulse duration (well below membrane time constants) and increase in pulse frequency (beyond 

axon refractory periods) that challenge conventional models of stimulation (Linderoth and 

Foreman, 1999; Litvak et al., 2003). 

Evidence against traditional neural MoA warrants investigation of other phenomena. We 

note that since the decrease in interpulse-interval (e.g. from 10 ms at 0.1 kHz to 0.1 ms at 10 kHz) 

is more drastic than the decrease in pulse duration (e.g. from 100 µS per phase at 0.1 kHz to 40 µS 

per phase at 10 kHz (Lempka et al., 2015; Yearwood et al., 2010), kHz stimulation is associated 

with higher duty cycle – and the RMS power of a rectangular waveform varies positively with the 

square root of its duty cycle. Through the principle of joule heating, the power of current flow 

from an implanted lead can produce temperature increases around the lead (Chang, 2003; Elwassif 

et al., 2012a; Kiyatkin et al., 2002; Labonte, 1994; LaManna et al., 1980a; Miller et al., 2016; 

Tungjitkusolmun et al., 2000). Thus, kHz stimulation deposits more power in the tissue than 

conventional spinal cord stimulation and is therefore more likely to significantly heat the tissue 

immediately surrounding the stimulation site. A temperature increase and resultant thermal 

conduction into the spinal cord can, in turn, affect neuronal function (Kiyatkin et al., 2002) (e.g., 

via alteration of ion channel or neurotransmitters dynamics) and related biological functions (e.g., 

via vasodilation (Tanaka et al., 2004), heat shock protein expression (Eng et al., 2014)) depending 

on the degree of change. Tissue heating further encourages the expression of anti-inflammatory 

agents, such as heat shock proteins (Wang et al., 2003), over a period of time consistent with the 

extended wash-in times of kHz-SCS treatment.    
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Any form of electrical stimulation produces passive heating and the extent of induced 

temperature increases are specific to both the stimulation and local tissue properties, with various 

stimulation and environmental parameters affecting the degree to which heating occurs(Chang, 

2003; Kiyatkin et al., 2002; Masuda et al., 2011). Key stimulation parameters are the stimulation 

waveform (based on stimulator programming) and electrode montage (based on lead placement), 

which together with tissue anatomy and electrical conductivity determine joule heat deposition. 

An implanted stimulator is a constant energy source which will produce unlimited temperature 

increases without passive (e.g. heat conduction by CSF) or active (e.g. spinal tissue blood 

perfusion) heat dissipation by the tissue. As such, heating analysis depend on tissue properties such 

as thermal conductivity, metabolic rate, and blood perfusion; not only of the stimulation target but 

surrounding tissues. Indeed, we postulate that the local environment around SCS leads is especially 

conducive to temperature increases, namely the low conductivity of fat and enclosed anatomy of 

the vertebral canal. If heating due to these factors is sufficient during kHz frequency SCS to shape 

beneficial responses, then joule heating by SCS may be an adjuvant mechanism underlying 

therapy.  However, the degree of heating during kHz-SCS, including as aggravated by increased 

power deposition due to pulse compression and/or the enclosed spinal environment, remains 

unexplored. 

The objective of this study was to assess, for the first time, whether an increased duty-cycle 

(and so power) of High-Rate spinal cord stimulation will produce significant temperature increases 

in the spinal cord. Prior experimental and modeling studies of conventional non-invasive and 

invasive forms of brain stimulation has suggested minimal heating under normal device operation 

(less than 10C) (Maged M. Elwassif et al., 2006a; Elwassif et al., 2012a; Gahwiler et al., 1972; 

Khadka et al., 2018c; Kiyatkin and Sharma, 2009). This study predicts the degree of tissue 
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temperature rises driven by SCS joule heat, and characterizes the role of SCS waveform (including 

frequency, pulse width, and amplitude) and tissue properties. We measured temperature increases 

around an experimental SCS lead in a bath to verify a finite-element-model of SCS joule heat. We 

confirmed the dependence of temperature rise only on the power of the stimulation waveform, 

independent of other parameters. Finally, we predicted temperature increases during conventional 

and kHz- SCS at the dorsal spinal cord under passive and active bio-heat conditions in a geometric 

human spinal cord FEM model. 

5.3. Method 

5.3.1. Bath Phantom study 

5.3.1.1.  Saline Bath Phantom 

Thermal and electrical conductivity measurements taken to verify the general heat transfer model 

were performed in a cylindrical glass container (diameter: 90 mm and height: 130 mm) with three 

varied NaCl concentrations (154 mmol/L, 34.22 mmol/L, and 3.42 mmol/L (approximating 

cerebrospinal fluid, meninges, and epidural space respectively). A thermal conductivity meter 

(Therm Test Inc., Canada) and an electrical conductivity meter (Jenco Instruments, Inc., San 

Diego, CA) measured the thermal and electrical properties of the saline solutions at 37 °C (core 

spinal cord temperature approximation). The measured corresponding conductivity values for each 

molar concentrations were: electrical conductivity (σ): 1.62 S/m, 0.47 S/m, and 0.047 S/m; and 

thermal conductivity (κ): 0.6268 W/(m.K), 0.6317 W/(m.K), and 0.6319 W/(m.K) respectively. 

5.3.1.2. In vitro Stimulation 
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For the saline bath experiments, an experimental polyurethane SCS lead with 4 

Platinum/Iridium electrode contacts (1.35 mm electrode diameter, 3 mm electrode length, 1 mm 

inter-electrode spacing) was placed at the center of the cylindrical container. The cylindrical 

container was then immersed in a temperature-controlled water bath (280 x 160 x 150 mm3) 

maintained at ~37 °C (Fig 1A) and baseline temperature was stabilized for > 60 minutes. Three 

different waveforms, namely sinusoidal, square, and a symmetric charge-balanced biphasic pulse 

waveforms mimicking the characteristics and parameters of clinical SCS waveforms (described 

by leading pulse duration, inter-pulse interval, recovery pulse duration), were generated using a 

function generator (AFG320, Tektronix, Beaverton, OR, USA). The generated waveforms were 

passed through a custom designed high-bandwidth linear current isolator to the experimental SCS 

lead. (Distal) Electrode contact 1(E1) and (proximal contact) 4 (E4) of the experimental SCS lead 

were energized for all saline bath experiments. Tested stimulation intensities were 1- 7 mA (peak) 

using rates of 0.1 KHz to 10 KHz. Only for phantom verification, biphasic rectangular waveform 

pulse widths of each phase (40 μs) and interphases (10 μs) were kept constant such that the duty 

cycle increased directly with stimulation frequency. 

5.3.1.3. Temperature Measurement and Analysis 

A fiber optic temperature probe (STS Probe Kit, LumaSense Technologies, Inc. CA, USA) 

sensed by a fiber optic thermometer (± 0.1 0C accuracy at calibration temperature, m600 FOT 

LAB KIT, LumaSense Technology, CA, USA) was positioned in the proximity of E4 to measure 

temperature increases during stimulation (Fig. 36A). We measured the peak temperature change 

in the bath radially from E4 (1 mm, 2 mm, 3 mm, and 4 mm) during stimulation as a function of 

peak stimulation amplitudes (1-7 mA), over a range of stimulation frequencies (0.1 KHz, 1 KHz, 

5 KHz, 10 KHz, and 20 KHz) for sinusoidal, square, and SCS pulsed waveforms. Measured 
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temperature was digitized using TrueTemp data acquisition and graphing software (60 

samples/measurement and 1 second measurement interval, LumaSense Technologies, Inc. CA, 

USA). Temperature was normalized with respect to the initial temperature (~370C), which was 

considered baseline. 

5.3.2. Computational Models and Solution Method 

5.3.2.1.      Bioheat Model of Spinal Cord 

Human spinal cord was simulated as a computer-aided design (CAD) derived model comprising 

seven compartments namely vertebrae (lower thoracic region, T8-T11), intervertebral disc, 

surrounding soft-tissues (minimally perfused), epidural fat, meninges, cerebrospinal fluid, and 

spinal cord (white matter and grey matter combined; Fig. 37). The dimensions of the individual 

tissues, modelled as isotropic homogenous volume conductors, were based on human cadaveric 

spinal cord from prior studies(Kameyama et al., 1996a). The diameter of spinal cord with dorsal 

roots was fixed (spinal cord, 6.4 mm; dorsal roots, 0.5 mm) and the thickness of the adjacent tissues 

were: CSF, 2.0 mm; meninges, 0.5 mm; and epidural fat 1.0 mm.  We note that in situ, the diameter 

of the spinal cord varies along the vertebral column. Two SCS clinical leads were modelled and 

placed epidurally in a minimally staggered bilateral fashion (SCS Lead 1, 1 mm distal to the 

mediolateral midline at T8; SCS Lead 2, 0.5 mm away from SCS Lead 1 and proximal to the 

mediolateral midline at T9; Fig. 37A2). We energized only the first SCS lead; the second lead was 

passive, positioned to mimic a clinical placement, and used to assess the impact of the presence of 

a passive lead on heat dispersion (Valle-Giler and Sulaiman, 2014). The finite element method 

(FEM) model was solved using Pennes’ bioheat equation governing joule heating during electrical 

stimulation (Laplace equation for electrostatics (∇(𝜎∇𝑉) = 0) where V is potential and σ is  



www.manaraa.com

158 
 

 

Figure 36: Measurement of temperature increases in phantom preparation across rates, waveforms 

(SCS, sinusoidal, square) and conductivities and verification of FEM SCS heat model. Dark grey box: 

standard error of the mean; Light grey box: standard deviation; black line: mean of the data, and 

the dots are the individual ∆T measurements. (A) Schematic of a salt bath experimental set up with an 

experimental SCS lead in a salt bath heated in a water bath, function generator driving custom isolator 
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energizing to the experimental SCS lead, and optical temperature probe mounted on a micro-manipulator. 

(B) ∆T measured at a radial direction away from the electrode contact (E4, positive polarity) when applying 

a 10 kHz Symmetric biphasic pulsed waveform at 5 mA peak in a low conductivity saline bath, and the 

corresponding FEM heat model. Spatial temperature field decreased with increasing radial distance as 

predicted with the highest temperature increases (mean ~ 0.5 0C) measured proximal to the lead (1 mm). 

(C1) For 10 kHz sinusoidal waveform, temperature increases as a function of peak stimulation intensity in 

varied saline bath conductivities: Green: 0.047 Sm−1; Blue: 0.47 S/m; Red: 1.62 S/m. Experimental (dots) 

and predicted (broken lines) ∆T significantly increased with stimulation intensity with higher sensitivity in 

lower conductivity saline baths. (C2) For 10 kHz sinusoidal waveform, ∆T measurement at varied 

stimulation frequencies (0.1, 1, 5, 10, 20 kHz) and conductivities. Temperature increases were independent 

of frequency and consistently higher for low saline conductivity (p < 0.01). (D1) ∆T across different 

waveforms and stimulation intensities (Main Panel: Peak; Inset: RMS matched) with frequency fixed at 10 

KHz. (D2) ∆Ts for the different waveforms across various frequencies at RMS stimulation intensities 

(Square, 5 mA; Sinusoidal, 4.95 mA; Symmetric biphasic pulsed, frequency-dependent RMS). 

conductivity), metabolic heat generation rate (Qmet or MHG), and blood perfusion rate (ωb or BPer) 

in the tissues as mentioned below: 

𝜌𝐶𝑝𝛻𝑇 = ∇. (𝜅∇𝑇) − 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏) + 𝑄𝑚𝑒𝑡 + 𝜎|∇𝑉2|                     (1) 

where 𝜌, 𝐶𝑝, T, σ, and κ represent tissue density, specific heat, temperature, electrical conductivity, 

and thermal conductivity, respectively. Biological properties of blood such as density (𝜌𝑏), specific 

heat (𝐶𝑏), and temperature (𝑇𝑏) were assumed constant in all vascular spinal tissues (vertebrae, 

meninges, spinal cord) and the corresponding values were 1057 kg /m3, 3600 J / (kg. K), and 36.7 

0C respectively. Blood perfusion rate (𝜔𝑏) values were tissue specific and were in the range of 

0.0003-0.008 s-1 (Collins et al., 2004a; Xu et al., 1999a). In spinal tissues, metabolic activities due 

to local spinal cord metabolism and enhanced metabolism in response to SCS generates thermal 
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energy(Morrison and Nakamura, 2011)Blood circulation also plays a significant role in 

transporting thermal energy across the spinal tissues through convection (Hodson et al., 1989b). 

We considered the blood temperature in the spinal tissues to be 0.3 0C less than core spinal cord 

temperature (37 0C). We investigated how the interaction between metabolic heat generation and 

blood perfusion modulates kHz-SCS induced temperature increases. Prior to the application of 

kHz-SCS, the metabolic heat generation rate required to balance the initial spinal cord temperature 

was calculated using equation (2) (Hodson et al., 1989b; Wilson and Spence, 1988a) for the 

aforementioned perfusion rates as:  

𝑄𝑚𝑒𝑡 = 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏)                 (2) 

where T and Tb are initial spinal cord and blood temperature. The calculated Metabolic Heat 

Generation (MHG) and the corresponding Blood Perfusion (BPer) values were given as; spinal 

cord and meninges (𝑄𝑚𝑒𝑡, 9132 𝑊𝑚−3; 𝜔𝑏 , 0.008 𝑠−1), vertebrae (𝑄𝑚𝑒𝑡, 342 𝑊𝑚−3 ; 

𝜔𝑏 , 0.0003 𝑠−1), and minimally perfused soft-tissues (𝑄𝑚𝑒𝑡, 457 𝑊𝑚−3; 𝜔𝑏 , 0.0004 𝑠−1). The 

balanced 𝑄𝑚𝑒𝑡 values approximated prior experimental measurements(Collins et al., 2004a; D. 

Fiala et al., 1999; Xu et al., 1999a). CSF convection is not incorporated but could be considered 

in future bio-heat models. 
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Figure 37: FEM SCS heat transfer model architecture and work flow. (A1) CAD derived spinal cord 

model with dimensions based on human cadaver study68. (A2) Geometry of sample clinical human SCS 

lead and a placement of the lead in a segmented spinal cord with dorsal roots and surrounding tissues. SCS 

lead was positioned into the epidural space between lower thoracic (T8-T10) vertebral region. Two leads 

were modelled as to mimic clinical intervention, positioned in a minimally staggered bilateral fashion. 

Epidural space was modelled with fatty tissues. (A3) Resulting volumetric mesh of spinal tissues. (A4) The 

numerical solution predicted ∆T (0C) and EF (V/m) in the spinal tissues. Black line in the temperature 

profile plot and red line in the EF plot represent radial direction from the lead where temperature was 

sampled. 

Mimicking clinical montages and waveforms, we energized electrode contacts E1 and E3 

of the clinical SCS Lead 1 in a bipolar configuration (8 mm center-to-center electrode distance). 

Maximum temperature increases by conventional and kHz-SCS using rectangular waveforms for 

varied peak amplitudes (1, 2, 3, 3.5, 4, 5 mA), frequencies and pulse widths (50 Hz (200 µs), 100 

Hz (200 µs), 1 KHz (40 µs and 100 µs), 5 KHz (40 µs), and 10 KHz (40 µs) were predicted and 

compared between active (bioheat) and passive heating cases at three different locations namely, 

at the distal edge E3 of the clinical SCS Lead 1 (~ 0.01 mm from the surface of the lead), at the 

proximal surface of the dorsal root to the SCS lead, and at the surface of spinal cord (~ 3.5 mm 

radial from the E3 electrode).  

5.3.2.2. Boundary and initial condition 

To model each stimulation waveform, we applied corresponding static RMS values (see 

phantom and model Results for justification). The accuracy of RMS intensities calculated 

analytically for a given intensity, frequency, and pulse width (see equation 3) were confirmed 

experimentally by stimulation across a resistive load (1 KΩ) with voltage acquisition using a 

digital mixed signal oscilloscope (MSO2024, Tektronix, OR, USA, ± (100 mv + 3 % of 
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threshold)), a DAQ (NI PCI 5922, National Instruments, TX, USA, ± 500 ppm (0.05 %) of input 

+ 50 µV), and a digital multimeter (DMM 7510 7 
1

2
 Digit Graphical Sampling Multimeter, 

Tektronix, OR, USA, ± 60 ppm 0.0014% of input). The error in calculated versus measured RMS 

values was less than 5 %.  

 

IRMS    = √
1

𝑇
∫ 𝐼

𝑡

0
(𝑡)𝑝𝑒𝑎𝑘

2  𝑑𝑡   

           = 𝐼(𝑡)𝑝𝑒𝑎𝑘√
𝑡

𝑇
 

           = 𝐼𝑃𝑒𝑎𝑘√𝐷                                                                                                                     (3) 

where IPeak is the peak bipolar stimulation intensity, IRMS is the corresponding RMS value, T is the 

pulse duration, t is the pulse width, and D is the duty cycle.  

A static inward normal current density (Jnorm, RMS) corresponding to the stimulation current 

intensity (IRMS, Table 3) was injected through E1, and E3 was set as the return (producing a bipolar 

configuration). The electrical and thermal conductivities of the electrode contacts and the inter-

electrode spacing were 4 x 106 S/m and 31 W/(m.K), and σ=1 x 10-15 S/m; κ=0.0262 W/(m.K) 

respectively (Morrison and Nakamura, 2011).The outer boundaries of the spinal cord and the 

surrounding tissues were considered electrically insulated.  
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Table 3: FEM SCS Bio-heat model predicts temperature increases (∆T) in fat around the Lead, the 

surface of spinal cord (SC), and the proximal origin of dorsal Root, as a function of stimulation 

waveform and intensity (I), for passive (A) and active (B) tissue models. For each waveform (top row) 

the corresponding Pulse Compression Factor (PCF) is indicated (see Methods). For each waveform and 

intensity simulation, the corresponding RMS is indicated. In addition to increments of 1 mA peak, 3.5 

mA peak is also simulation (grey rows). 

For the thermal boundary conditions, the temperature at the outer boundaries of the spinal 

column was fixed at core body temperature (37 0C)(D. Fiala et al., 1999; Xu et al., 1999a) with an 

assumption of no convective heat loss to the ambient temperature, no convective gradients across 

spinal surrounding tissues, and no SCS-induced heating at the model boundaries(Collins et al., 

2004a). The initial temperature of the tissues was assumed to be 370C, and thermo-electrical 
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properties of biological tissues were based on average literature values(Gabriel et al., 1996b; IT’IS 

Foundation, 2015). Intravertebral disc (σ=0.830 S/m; κ=0.49 W/ (m.K) and csf (σ=1.65 S/m; κ=0.57 

W/ (m.K) are avascular, and therefore have no BPer and MHG, whereas the other remaining tissues 

are vascularized and have BPer and MHG as listed: epidural fat (σ=0.25 S/m; κ=0.21 W/ (m.K), 

𝜔𝑏= 0.0001 𝑠−1, 𝑄𝑚𝑒𝑡= 58 𝑊𝑚−3 ) soft tissues (σ = 0.15 S/m; κ = 0.47 W/ (m.K), 𝜔𝑏= 0.0004 

𝑠−1, 𝑄𝑚𝑒𝑡= 457 𝑊𝑚−3), vertebrae (σ = 0.01 S/m; κ = 0.32 W/(m.K), 𝜔𝑏= 0.0003 𝑠−1, 𝑄𝑚𝑒𝑡= 342 

𝑊𝑚−3), meninges (σ = 0.368 S/m; κ = 0.44 W/(m.K), 𝜔𝑏= 0.008 𝑠−1, 𝑄𝑚𝑒𝑡= 9132 𝑊𝑚−3), and 

spinal cord (σ = 0.126 S/m; κ = 0.51 W/(m.K), 𝜔𝑏= 0.008 𝑠−1, 𝑄𝑚𝑒𝑡= 9132 𝑊𝑚−3). When 

indicated, these “standard” tissue values were manipulated by either 1) doubling or halving the 

electrical and/or thermal conductivities of a given compartment, or 2) by substituting properties 

across compartments.  

5.3.2.3. Saline bath Phantom FEM 

SCS saline bath phantom was modelled using equation (1) while eliminating the biological 

tissue parameters. The FEM Phantom model was parameterized based on the dimensions, 

conductivity, and initial temperature of the experimental set-up. As tested, we simulated one SCS 

experimental lead centrally placed in a saline bath phantom. For the electrical boundary conditions, 

a uniform RMS current density was applied at E4 (anode) and return at E1(cathode). The outer 

boundaries of the bath were considered electrically insulated. For thermal boundary conditions, 

the external boundary temperature and the initial temperature of the bath were fixed at 37 0C. To 

account for the voltage drop due to the electrode-saline interface(Cantrell et al., 2008; Merrill et 

al., 2005; Richardot and McAdams, 2002), a correction factor of 50% was applied in phantom 

stimulation(Elwassif et al., 2012b). 

5.3.2.4. Model Construction and Computational Method 
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Human spinal cord and saline bath phantom models were CAD derived, assembled in 

SolidWorks 2016 (Dassault Systemes Americas Corp., Ma, USA), and imported using Simpleware 

ScanIP (Synopys Inc., CA, USA). The entire volume of the spinal tissue and the electrode 

assembly was 83.0 x 74 x 108 mm3. Prior to the segmentation, tissues were resampled to have an 

isotropic resolution of 0.2 mm3. Resampled images were segmented into seven tissues 

compartments along with the T8-T11 positioned SCS lead assembly using a combination of 

automatic and manual segmentation filters (Fig. 37A2). Using a voxel-based meshing algorithm 

of ScanIP, an adaptive tetrahedral mesh was generated. The final model size resulting from 

multiple mesh densities refinement contained approximately 4,600,000 tetrahedral elements for 

the full anatomy of spinal cord model and approximately 320,000 tetrahedral elements for the 

saline bath model (Fig. 37A3). The meshes were imported into COMSOL Multiphysics 5.1 

(COMSOL Inc., MA, USA) to computationally solve the FEM model. The SCS model was solved 

for both passive heating (joule heating, without BPer and MHG) and active heating (bioheat, with 

BPer and MHG) conditions. The baseline temperature gradient for the active heating case was 

predicted by first solving the heat transfer model in the absence of electrical stimulation. In passive 

heating, the baseline temperature gradient was set to zero. The Saline bath model was solved only 

for passive heating condition. Both phantom and SCS models were solved under steady state 

assumption and corresponding temperature increases and field intensities were quantified.  Heat 

flux and field intensity streamlines (seeded at selected tissue boundaries and proportional in 

diameter to the logarithm of corresponding magnitudes) were plotted to illustrate the overall 

distribution across tissues (Fig. 38).  

5.3.3. Statistics and Analysis 
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Normality test on temperature increases were conducted using Lilliefors corrected K-S test 

statistical test. A two-way repeated measure analysis of variance (ANOVA) was used to assess the 

statistical differences in ∆T across different tested conditions (stimulation intensity, waveforms, 

frequencies, conductivities). A critical value (p) < 0.01 was accepted as a statistical difference 

between the groups. Further significance between groups were verified using Post hoc Scheffe’s 

test (corrected multiple comparisons). The statistical relations between the experimental data the 

FEM data was evaluated through a simple linear regression MATLAB (R2016a, MathWorks, MA, 

USA). 

The standard forms of power law tested super-linearity between the RMS and temperature 

increases, using a linear least squares fitting technique derived by Gauss and Legendre with a 

power function(Weisstein, n.d.) given as: 

 

∆𝑇 = 𝐴 ∗ 𝑅𝑀𝑆𝛽          (4) 

 

where ‘β’ is the power, and ‘A’ is the proportionality constant. The value of ‘β ’determines the 

category of the relationship (β = 1, linear; β > 1, super-linear; β < 1, sublinear). Formulating the 

power function further on a log-log scale yield:  

 

𝑙𝑛(∆T) = ln(𝐴) + 𝛽 ∗ 𝑙𝑛(RMS)        (5) 

 

Equation (5) is a straight line with a slope ‘β’ and a y-intercept of 𝑙𝑛 (𝐴). Linear least square fit of 

the logarithmic data yields the correlation (r2)(Weisstein, n.d.). 
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Pulse Compression Factor per stimulation intensity (PCF) captures the increase in RMS of a High-

Rate waveform (RMSHigh-Rate) compared to a conventional 1 mA peak 50 Hz 200 µs pulse-width 

waveform (RMS50): 

 

𝑅𝑀𝑆𝐻𝑖𝑔ℎ−𝑅𝑎𝑡𝑒   =  𝐼𝑝𝑒𝑎𝑘 ∗ 𝑃𝐶𝐹 ∗ 𝑅𝑀𝑆50                   (6) 

PCF = 10 ∗ √𝑃𝑤 ∗ 𝑓                                             

 (7) 

where ‘Pw’ and ‘f ’are pulse width (sec) and frequency (Hz) for a given High-Rate waveform. 

 

5.4. Results 

5.4.1. Phantom Measurement and Model Verification 

A specially designed chamber was used to quantify temperature increases around an 

experimental SCS lead in a saline bath using varied waveforms (Fig. 36A). A micro-manipulator 

mounted optical temperature probe mapped steady-state temperature increases during stimulation 

with varied waveforms. As predicted by the FEM, temperature increases when applying a 10 kHz 

symmetric biphasic pulsed waveform at 5 mA peak intensity in a low conductivity saline phantom 

was maximal near energized electrodes and decreased with radial distance (Fig. 36B).  In separate 

experiments, salt bath conductivity was varied by saline concentration. The main effect of saline 

bath conductivity and stimulation intensities (1-7 mA peak sinusoidal) was significant (F (2, 105) 

= 218.95 p < 0.01 and F (6, 105) = 42.03, p < 0.01, a two-way ANOVA). The interaction between 

these factors on ∆T was also significant; (F (12, 105) = 19.88, p < 0.01). Temperature increases 
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were measured to be significantly greater in the lower saline bath conductivity (0.047 S/m) than in 

the other two saline bath conductivities (0.47 S/m and 1.62 S/m; Post-hoc Scheffe’s test, Fig. 

36C1). Across different saline conductivities at different sinusoidal frequencies, the measured 

temperature increases were significant; F (2,75) = 256.25, p < 0.01. ∆T was higher at lower 

conductivity saline bath (Fig. 36C2). 

 

Figure 38: FEM Bioheat transfer model of Spinal Cord Stimulation predicts temperature changes 

and electric field intensities. (A) Temperature increases at the spinal cord modelled with dorsal roots, and 

surrounding tissues for a metabolic heat and blood perfusion modulated high rate spinal cord stimulation 

(kHZ-SCS). Temperature gradient streamlines originated from SCS leads to the spinal cord and dorsal roots 

are depicted.  (A1) Accumulated heat (shown as heat flux streamlines) transported throughout spinal cord 

and dorsal roots during kHz-SCS. (A2, B2) illustrates predicted temperature and electric field (EF) spatial 

distribution on a spinal cord, dorsal roots, and other adjacent tissues. (B) Field intensity distribution across 

spinal cord and surrounding tissues. EF strength across each tissue are depicted by electric field streamlines 

seeded on every tissue boundary. 

Temperature increased by up to ~1 0 C with stimulation amplitude during stimulation using 

all 10 KHz waveforms (symmetric biphasic pulse, square, sinusoidal).  In addition, when 
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considering only peak intensities, higher ΔT was observed during stimulation using pulsed and 

square waveforms versus the sinusoidal waveform (F (2,105) =41.14, p < 0.01).  However, this 

effect was found to be directly related to the RMS of the waveform (Fig.  36D1a) and not to the 

specific shape of the stimulation waveform (F (2, 75) = 1.11, p > 0.01). 

In a separate series, temperature increases were measured across varied frequencies for all 

waveforms (symmetric biphasic pulse, square, sinusoidal) in a low conductivity saline bath with 5 

mA peak current intensity (corresponding RMS: sinusoidal waveform, 4.95 mA; square waveform, 

5 mA; in pulsed waveform, RMS varies with frequency (Fig. 36D2)). There was a main effect of 

stimulation waveforms on ∆T; F (2, 60) = 133.44, p < 0.01. Temperature increases (0 to ~ 0.4 0C) 

across frequencies for symmetric biphasic pulsed waveform were significant (p < 0.01); however, 

for true square and sinusoidal waveforms, ∆T did not increase significantly across frequencies (p 

> 0.01).   Temperature rises appeared to reflect the increase in duty cycle and RMS only for the 

symmetric biphasic pulsed waveform. Conversely, significantly higher temperatures were 

measured overall at the 5 mA peak intensity for sinusoid and square waveform compared to the 

pulsed waveform- reflecting the 100% duty cycles and therefore higher RMS values of the sinusoid 

and square waveforms. 

Computational FEM predictions of the phantom using the experimental lead and 

waveforms were correlated with experimental temperature increases measurement at varied saline 

conductivities ((R2= 0.24, F (1,40) = 12.20, p < 0.01, 1.62 S/m; R2= 0.26, F (1, 40) = 13.70, p < 

0.01, 0.47 S/m; R2= 0.84, F (1,30) = 201.84, p < 0.01, 0.0047 S/m) (Fig. 36C1). Computationally 

predicted and measured temperature increases were strongly correlated across different RMS 

stimulation intensities (R2=0.86, F (1, 27) = 167.39, p < 0.01(Fig. 36D1a)). Accordingly, a strong 
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association between ∆Ts were established along radial direction away from the experimental SCS 

lead; R2 = 0.96, F (1, 21) = 495.59, p < 0.01 (Fig. 36B). 

 

5.4.2. Computational Model of Heating by SCS: Influence of waveform with standard tissue 

parameters 

Using a FEM bio-heat computational models of human spinal cord stimulation, tissue 

temperature increases were predicted under varied stimulation parameters (Table 3) for passive 

heating and active conditions initially using “standard” tissue parameters (see Methods).  Six 

representative SCS waveforms were simulated, with selected frequency and duty cycle 

(corresponding Pulse Compression Factor noted in table; see Discussion), each with varied peak 

intensity from 1 to 5 mA (corresponding resultant RMS noted in table). For each waveform and 

intensity, we tabulate the maximum ∆T around the SCS clinical lead (E3 contact), at the proximal 

surface of the dorsal root to the SCS lead (~ 1 mm lateral to the stimulating lead), and at the surface 

of spinal cord (~ 3.5 mm radial to the stimulating lead).  

From this analysis, several important predictions emerge. Heating under the standard active 

model (which includes blood perfusion (BPer) and metabolic heat generation (MHG)) was lower 

than the standard passive model (where BPer and MHG were absent). Maximum temperature 

increases were generated around the SCS clinical lead (the epidural fat). Temperature increases 

were relatively higher for waveforms with a higher Pulse Compression Factor. Both active and 

passive heating increased with stimulation RMS, and so with intensity or Pulse Compression 

Factor, in a super-linear manner (e.g. doubling stimulation intensity or Pulse Compression Factor 

doubles RMS and results in a > 2-fold increase in temperature (Fig. 39)). While relative 

temperature increases were more sensitive to intensity than Pulse Compression Factor, the highest 
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temperature increase were predicted under high Pulse Compression (e.g. the 10 KHz waveform). 

For example, using a conventional 50 Hz waveform (PCF: 1.0), temperature at the spinal cord 

(SC) increased < 0.05 0C even at 5 mA peak (RMS: 0.71) while using a 10 KHz waveform (PCF: 

6.32) temperature at the spinal cord (SC) increased ~1 0C at 5 mA peak (RMS: 4.47).  

Dependence of temperature increase on RMS (and so Intensity or Pulse Compression 

Factor) was modeled assuming a power law relationship, which results in a linear log-log 

dependence (see Methods). Surprisingly, and despite the complexity of the standard tissue model, 

this fit sufficiently, and reliability predicted temperature increases. Slope (β) approached 2 (i.e. 

temperature increasing with the square of RMS) - a super-linear (β >1) sensitivity of temperature 

to RMS. The proportionality constant (A) increased across fat (Lead), Spinal Cord, and Root 

compartments, all relativity higher in the passive (Fig. 39A1) verse active (Fig. 39B1) tissue 

model. 

5.4.3. Computational Model of SCS: Parameter sensitivity analysis with fixed waveforms 

Living tissue possess complex thermo-electrical properties(Weisstein, n.d.) and these 

properties are tissue specific. In the active model, we predicted the sensitivity of SCS temperature 

to tissue properties by halving or doubling the thermal and/or electrical conductivity (from the 

standard model; see Methods) of each tissue compartment. At 3.13 mA RMS (as for a 10 KHz SCS 

waveform with 3.5 mA peak), we considered a significant change in predicted temperature as > 

0.03 0C and > 8 % from the standard model. No simulated changes in passive thermal and/or 

electrical conductivity at any tissue, except epidural fat (eF), produced a significant temperature 

change at the Lead, Spinal Cord, or Root. However, increases or decreases in epidural fat electrical 

conductivity significantly decreased or increased temperature across tissue compartments, 

respectively.  The resulting predicted range of temperature increases using waveforms with 3.13 
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mA RMS were (Passive Model Range; Active Model Range): Lead (1.53 – 11.57 0C; 1.25 – 10.77 

0C), Spinal Cord (0.42 - 1.72 0C; 0.18 – 0.72 0C), and Root (0.17 – 0.75 0C; 0.04 - 0.15 0C).  

We considered the sensitivity and fit of the power-law function across tissue properties, 

specifically varying fat electrical (σ) and thermal (k) conductivity (doubling and halving). In all 

tissue conditions, the linearity of log-temperature verse log-RMS confirmed a power-law fit, with 

consistently super-linear sensitivity (β >1). Thus, for each tissue model, temperature could be 

predicted reliability by simply the corresponding power law function parameters, A and β (Fig. 

39). In the passive model, β approached 2 across conditions. In the active model β could exceed 2, 

reflecting variance at low RMS, but not sensitivity at high RMS. The proportionality constant (A) 

varied more significantly across model parameters and tissue compartments, particularly near the 

Lead (Fig. 39A1, 39B1, 39B2).  
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Figure 39: Power law-fit description of temperature increase with stimulation RMS in SCS model. 

Temperature changes (∆T) at three locations (Lead, orange; Spinal Cord, green; and Root, light-

blue) as a function of stimulation RMS, across passive or active tissue model with varied fat electrical 

and thermal conductivity, were predicted by the FEM SCS model (data points). For each tissue model 

and compartment, we determined a best power-law fit (see Methods), which is a line with proportionality 

constant A and slope β (lines) on a log-RMS verse log-Temperature plot. Data plots include standard 

passive (A1), standard active (B1) tissue models, high thermal and electrical fat conductivity (2σ, 2κ) 

passive (A2) and active (B2) models, and low thermal and electrical fat conductivity (σ/2, κ/2) passive (A3) 
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and active (B3). A and β across all 9 permutations of fat electrical (σ) and thermal (κ) conductivity are 

summarized for passive (C) and active (D) cases. RMS values plotted in A1 and A2 span stimulations 

frequencies of 0.05, 0.1, 1 (with low or high duty cycle), 5, and 10 KHz (waveforms indicated in legend 

and as used in Table 3). RMS values in A2, B2, A3 and B3 span 1, 5, and 10 KHz. A β > 1 indicates super-

linear dependence of temperature rise on stimulation RMS; when β = 2 temperature increases with the 

square of RMS. 

To evaluate the contribution of peripheral spinal tissues on the temperature increases, we 

considered series of idealized models staring with uniform epidural fat and then sequentially 

adding adjacent tissues, under both active and passive model conditions (Fig. 40). The order of 

simulated tissues and predicted maximum temperature increases at locations corresponding to 

Lead position (“Lead”), Spinal Cord surface (“SC”), and dorsal Root surface (“Root”) are reported 

for both passive heating and active heating conditions (3.13 mA RMS at 10 KHz; Table 3). 

Maximum temperature increases and penetration (from the lead inward) is predicted in the uniform 

epidural fat model, with a relatively shallow electric field profile. The addition of Soft tissue (St), 

Vertebrae (Ve), and Intravertebral Disc (IvD) compartments and subsequent reduction of the size 

of the epidural fat layer(?) result in an incremental reduction in predicted temperatures increases – 

which is consistent with the notion that fat tissue properties are the most conducive to heating. The 

relative reduction in temperature between the active and passive models, as well as the reduction 

in electric field (which is always the same across active and passive models) emphasize these 

variables can change independently.  

Further addition of Meninges (Me) to the model reduced predicted temperature rises 

notably in both relatively interior (Spinal Cord) and exterior (Lead, Root) regions - indicating that, 

compared to fat, the Meninges conduct heat away.  The reduction in electric field at the Spinal 

Cord following addition of Meninges (from 165 V/m to 29.27 V/m) was comparable in scale to 
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the temperature decreases in the active model (from 1.22 0C to 0.25 0C) while in the passive model 

temperature was less sensitive (from 1.37 0C to 0.92 0C) – reflecting that the Meninges are 

vascularized in the active model. Further addition of CSF (CS) decreased predicted temperature 

rises at the SC and Root for the passive model, increased predicted temperature rises at the Lead 

for the passive model, and increased temperature in all compartments in the active model. The 

avascular nature of the CSF layer is overshadowed by its high electrical/thermal conductivity. 

Finally, addition of Spinal Cord (SC) restores the tissue parameters of standard model.  

5.5 Discussion 

Thermoregulation of CNS temperature is complex and depends on a high metabolic 

activity (LaManna et al., 1980b)  and both passive (conduction) and active heat exchange (blood 

flow). Neurostimulation, such as SCS, can challenge this equilibrium in several ways by 1) altering 

neuronal and so metabolic activity (Elwassif et al., 2012b; Kim et al., 2007; Mrozek et al., 2012); 

with 2) changing the cellular microenvironment (Bikson et al., 2001; Kim et al., 2007); 3) changing 

vascular function as a result of both direct blood vessel stimulation(Mandel et al., 2013; Pulgar, 

2015; Tanaka et al., 2004)   and secondary to microenvironment changes; and 4) depositing of joule 

heat (Maged M. Elwassif et al., 2006b; Elwassif et al., 2012b). In the context of kHz-SCS, this 

study specifically addressed joule heat with the hypothesis that by increased power (pulse 

compression), kHz-SCS waveforms will superlinearly increase tissue temperature, potentially 

inducing downstream alterations in tissue function with therapeutic effects in chronic pain. 

Characteristic clinical responses to kHZ-SCS including as the lack of associated neural sequelae 

such as paresthesia and the frequency insensitivity of efficacy(Thomson et al., 2018) reconcile 

well with joule heating, while the delayed time course of effects (Al-Kaisy et al., 2015) may be 
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explain by temperature homeostatic responses or heat shock protein regulation of 

neuroinflammation. 

5.5.1. Bioheat SCS Model 

FEM bioheat models of phantom, verified experimentally, and of human spinal cord, 

subjected to a broad parametric sweep (> 100 simulations in this study), are suitable for assessing 

our hypothesis as they enable predictions as to whether or not SCS may produce temperature rises 

sufficient to produce biological effects.  

Heating from chronic SCS represents an exogenous non-physiological challenge. We 

predicted temperature increases at the dorsal spinal cord of 0.18-1.72 °C and at the lead in epidural 

fat of 1.25 – 11.57°C under a typical kHz-SCS setting (10 KHz, pulse at 3.5 mA peak; 

corresponding to 3.13 mA RMS; Fig. 38, Table 3). This range depends on epidural fat electrical 

conductivity; the combination of high current density and low conductivity increases joule heating 

that is then conducted to other tissues.  

The degree of heating is a super-linear function of stimulation RMS power (Fig. 36D2) 

such that kHz-SCS can produce significantly more temperature rise than conventional frequency 

SCS. Assuming β ~ 2 and integrating (7) with the power-law relationship (4) yields: 

∆T = 0.02 ∗ 𝐴 ∗ 𝐼𝑝𝑒𝑎𝑘
2 ∗  𝑃𝐶𝐹2                      

(8) 

 

where ‘0.02’ is the square of RMS50 at 1 mA. 
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Figure 40: Tissue substitution analysis for passive and active heating conditions in SCS model. 

Predicted ∆T and EF were reported in both absolute scale (data sampled at a radial distance equal 

to the surface of spinal cord from the surface of epidural fact, represented by a gray dot) and relative 

scale (data sampled at a corresponding tissue surface for all tissue combination as illustrated in the 

figure) from parasagittal spinal tissue slice. On an absolute scale for both passive and active heating 

conditions, ∆T and EF decreased as more tissues were added around the epidural fat. With an entire tissue 

combination (A5, B5) on this scale, the ∆T and EF were 0.84 0C and 17.76 V/m in passive heating and 0.37 

0C and 17.76 V/m in active heating. Similarly, on the relative scale for passive and active heating conditions, 

∆T and EF decreased as more tissues were added. Maximum ∆T (7.65 0C) and EF (9.9 KV/m) were reported 



www.manaraa.com

178 
 

around the lead with only epidural fat (A1, B1, relative scale). As more tissues were added, ∆T around the 

lead decreased to 3.88 0C in passive heating and 3.67 0C in active heating. Maximum predicted ∆T and EF 

at the spinal cord was 0.37 0C and 17.76 V/m with the entire tissue combination (A5, B5, relative scale). 

 

Table 4: Tissue substitution order and resulting predicted temperature changes (∆T) at the Lead, 

Spinal Cord, or Root tissue compartments. In this series only one waveform with 3.14 mA RMS was 

simulated. For each model the tissues modeled could include epidural fat (eF), vertebrae (Ve), intervertebral 

discs (IvD), meninges (Me), cerebral spinal fluid (CS), and spinal cord (CS). 

Remarkably, at least across conditions considered here, temperature increases in any tissue 

inside the spinal canal were well fit using a power-law function (equation 8). With all lead position, 

electrode configuration, and passive and active tissue properties captured by a single 

proportionality constant (Fig. 39A). All waveform parameters collapse to Pulse Compression 

Factor, PCF (Equation 7). This heuristic finding has important potential consequences to SCS 

practice: 

i. From a modeling standpoint, this finding could dramatically simplify future efforts to 

predict temperature changes as part of SCS therapy optimization and programming.  

ii. Moreover, the super-linear sensitivity to PCF warrant attentions as incremental changes in 

waveform can spike tissue heating. 
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iii. From a mechanistic standpoint, if temperature increases underpin kHZ-SCS, then 

waveform power (as captured by PCF) is more important than any single waveform 

parameter (e.g. frequency, pulse width, shape) in generating effective therapy.  

iv. However, a heating MoA does not indicate only waveform PCF predicts outcomes as other 

factors (e.g. electrode placement) influence the proportionality constant (A). Nor does this 

imply a fixed minimum for stimulation energy (charge, battery consumption) which 

depends on other factors such as device efficiency and impedance.  

 

5.4.4. Physiological Implications 

The nervous system, including the spinal cord, is sensitive to temperature changes. 

Temperature increases to ~44 °C (Mandel et al., 2013) result in brain damage in animal models 

after 60 minutes (Lawson et al., 2008; Morrison and Nakamura, 2011), with the temperature 

threshold for injury decreasing with increased exposure time. In animal models, significant 

changes in brain excitability have been noted with short-term increases of >2 °C (Harris et al., 

1962a; Kim and Connors, 2012a; Matsumi et al., 1994a), with sensitivity to lower-temperature 

expected with long-term temperature increases. Brain temperature increases above 39 °C in 

ischemic brain injuries increases extracellular excitatory amino acids level, opening of blood-brain 

barrier, and elevated proteolysis of the neuronal cytoskeleton (LaManna et al., 1980b; Tasaki and 

Byrne, 1987). A sustained 1-2 °C rise in brain temperature after injury is potentially hazardous 

(Childs, 2008; Dietrich, 1992; Tasaki and Byrne, 1987). While there are transient changes in 

temperature during normal function (2-3 °C (Dietrich, 1992; LaManna et al., 1980b; Tasaki and 

Byrne, 1987; Wass et al., 1995)) a sustained temperature change may produce cumulative and 

profound changes in brain function. We predicted significant temperature changes in the spinal 
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cord that met or exceeded these thresholds, specifically using kHz frequency waveforms where 

Pulse Compression increases heat deposition. Our findings are a surprising and important first step 

toward determining a new heating mechanism for kHz-SCS as well as other relatively high power 

(kHz frequency) neuromodulation techniques (Patel et al., 2017; Wang et al., 2014). 

Evidence for stimulation acutely changing neuronal firing and metabolism, perfusion 

(Elwassif et al., 2012b; LaManna et al., 1980b; Mrozek et al., 2012) and the extracellular 

environment(Kim et al., 2007) is specific (limited) to sub-kHz frequencies for SCS-relevant 

simulation amplitudes (Bikson et al., 2001; Pulgar, 2015; Tanaka et al., 2004); and so were not 

modeled here (Qmet and wb were constant).  Starting with kHz-stimulation joule heating, changes 

in brain function can derive from the acute changes in dynamics (e.g. ion channel gating, 

neurotransmitter clearance; (Bennetts et al., 2001; Chowdhury et al., 2014a)) or a homeostatic 

molecular response to chronic temperature changes (e.g. heat shock proteins). Slow temperature 

homeostatic changes provide a plausible explanation for the delayed onset of pain relief by kHz-

SCS (Al-Kaisy et al., 2015; Thomson et al., 2018)  and suggest specific molecular pathways (MoA) 

for pain relief including heat shock protein producing downregulation of neuroinflammation. For 

example, 72-kDa heat shock protein (Hsp70) inhibits activation of the pro-neuroinflammatory 

transcription factor, nuclear factor-kB in satellite glial cells (NF-kB) (Zheng et al., 2011).  

Knocking out NF-kB dependent satellite glial cell activation reduces expression of neuronal 

colony stimulating factor 1 (Csf1)(Lim et al., 2017), which can potentially reduce the 

inflammatory response and restore normal function of the spinal pain processing network.  

However, experimental measurement of expression factors associated such metabolic, genetic, and 

plastic changes that evolve with prolonged heating and the correlation of these changes with the 

function of the spinal pain processing network are required to validate this hypothesis.  
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Appendix 6: The Quasi-uniform assumption for Spinal Cord 

Stimulation translational research 

6.1. Outline 

This Appendix describes the quasi-uniform assumption which is a general theory that 

postulates local electric field predicts neuronal activation. A version of this study has been 

published (Niranjan Khadka et al., 2019c). We developed the computational current flow model 

of spinal cord stimulation (SCS) of humans and animal models to inform how the quasi-uniform 

assumption can support scaling neuromodulation dose between humans and translational animal. 

6.2. Introduction 

We extend the “quasi-uniform assumption” (Bikson et al., 2013) to apply it to animal 

models of spinal cord stimulation (SCS).  For animal models of SCS to be meaningful, they must 

provide electrical stimulation in a way that approximates how the nervous system is activated 

during clinical therapy. Since the mechanisms of electrical stimulation are determined by which 

neuronal elements are excited (Ranck, 1975), SCS animal models would ideally use electrode 

montage (size, position) and current that stimulate the same distribution of neuronal elements as 

activated clinically. It is established that the spatial distribution of electric field across tissue 

(around neurons) determines which neuronal elements are excited (McIntyre and Grill, 1998; 

Rattay, 1999, 1986; Warman et al., 1992; Wongsarnpigoon and Grill, 2008), and so electrode 

montage and current in animal SCS models should create an electric field distribution 

approximating that produced clinically. However, this is impossible in practice, as animal anatomy 

is not proportionally scaled from humans. One can reproduce an electric field in one region of 
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interest (e.g. the dorsal column of one segment), but not the exquisitely detailed electric field 

changes over space - which will be species (even animal) and dose specific.  

This challenge in approximating electric field spatial distribution is not specific to SCS, 

but applies to all translational models of brain stimulation leading to the formulation of the quasi-

uniform assumption (Bikson et al., 2013). The quasi-uniform assumption should be understood as 

practical tool, not an ideal solution. The quasi-uniform assumption relies on two logical steps. 

First, the quasi-uniform assumption deviates from the dogma of relying on activating function (the 

electric field derivative) in predicting neuronal excitation (McIntyre and Grill, 1999; Rattay, 1999), 

and rather suggests that most CNS neuronal elements will be excited directly by the local electric 

field (Arlotti et al., 2012; Rahman et al., 2013; Rubinstein, 1993; Tranchina and Nicholson, 1986). 

In fact, experiments and activation-function-based modeling already demonstrate polarization 

sensitivity directly to local electric field magnitude for neuronal elements such as axons terminals 

(synapses), dendrites, and compact neurons (see Discussion). Second, as the electric field varies 

in a complex manner across tissue that is inconsistent across species (Hurlbert and Tator, 1994; 

Idlett et al., 2019; Swiontek et al., 1976; Xu et al., 2017), the quasi-uniform assumption indicates 

identifying one region of interest (a nominal target) and matching the electric field in just that 

region across animal and clinical cases. Ironically, the more one argues again the first aspect (that 

only exquisitely detailed modeling of electric field gradients along each neuron, compartment is 

sufficient), the more the second aspect becomes required - since electric field changes across an 

entire single neuron, much less a population of neurons, cannot be reproduced between human and 

animal. 

The spatio-temporal distribution of electric fields in the body determines stimulation 

outcomes. Under quasi-static assumptions (Bossetti et al., 2008), the temporal waveform is easy 
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to replicate but the spatial distribution cannot be, where we can then find a basis in the quasi-

uniform assumption. 

There are three general approaches to scale stimulation dose in translational animal models. 

The first approach is to scale stimulation in the “dose space”, namely to scale electrode size and/or 

current intensity by some arbitrary factor such as by animal size or physical space for the electrode. 

This approach is not principled (e.g. matching electrode current density between human and animal 

models does not produce equivalent outcomes; (Jackson et al., 2017)). The second approach is to 

use an acute physiological marker of nervous system activation (such as motor threshold; (Crosby 

et al., 2017, 2015a, 2015b; Guan et al., 2010; Koyama et al., 2018; Meuwissen et al., 2018; Prager, 

2010; Sato et al., 2014; Schechtmann et al., 2008; Sdrulla et al., 2018; Song et al., 2013a, 2013b; 

Stiller et al., 1996; Yuan et al., 2014)) but using a stimulation waveform unlike that of interest for 

neuromodulation (e.g. using single pulse for motor threshold vs high rate pulse trains for 

neuromodulation). In this approach, the current is scaled based on this physiologic response, by 

the electrode montage is still ad hoc (e.g. what fits). Doing so ideally replicates in an animal model 

the neuronal elements (mechanism, and degree of activation) of a plausibly comparable acute 

physiological marker in human. However, the influence of stimulation other nervous system 

elements is not replicated, nor do the activated neuronal elements necessarily remain the same as 

waveform is changed. As a result, using an acute physiological maker to determine dose in animal 

is only valid as far as the acute physiological marker directly relates to the therapeutic mechanism.  

The third approach to scale stimulation dose in translational animal models leverages 

computational models to predict electric fields (Bikson et al., 2015). In principle, this approach is 

based on long-standing principles that the electric field produced in the tissue along neuronal 

elements determines stimulation outcomes. But, our essential nuance to computational based 
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modeling, which is the quasi-uniform assumption, is the reliance of electric field magnitude on 

one region of interest. The generalization of electric field magnitude as a predictor of neuronal 

activation is addressed in the Discussion. However, our central point here is more practical: if one 

wants to rely on tissue electric field as a mean to justify scaling in an animal model, than reliance 

of electric field is not just useful but realistically inevitable, including in translational SCS studies 

(Idlett et al., 2019). To make this point, we apply it in high-resolution models of rodent, cat, and 

human. Previous studies have modeled SCS clinically (Hernández-Labrado et al., 2011; Howell et 

al., 2014; Huang et al., 2014; Lee et al., 2011; Lempka et al., 2015) and in specific animal models 

(Capogrosso et al., 2013a; Idlett et al., 2019; Xu et al., 2017)), and our approach here is not 

intended to be comprehensive (e.g. consider a wide range of electrode parameters) but rather 

reinforces these prior efforts in the context of the quasi-uniform assumption. 

6.3. Materials and methods 

We developed a  computer-aided design (CAD) model of an exemplary brain slice chamber 

(din = 50 mm; dout = 60 mm; h = 40 mm), mimicking  brain slice electric field stimulation (Bikson 

et al., 2004; Ghai et al., 2000; Gluckman et al., 1996) with two parallel conductive Ag/AgCl wire 

(d = 1mm; l = 60 mm), and SCS leads in SolidWorks (Dassault Systemes Corp., MA, USA).. For 

animal and human studies, we modelled two types of SCS leads namely a 4 Pt/Ir electrode contacts 

polyurethane SCS lead for animal study (rat: 1.35 mm electrode diameter, 3 mm electrode length, 

and 1 mm inter-electrode spacing; cat: 1.35 mm electrode diameter, 3 mm electrode length, and 1 

mm inter-electrode spacing) and a 8 Pt/Ir electrode contacts SCS lead for human study (1.35 mm 

electrode diameter, 3 mm electrode length, and 1 mm inter-electrode spacing (Zannou et al., 

2018)).  
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High resolution magnetic resonance imaging (MRI) scans of template healthy rat (0.1 mm), 

cat (0.1 mm), and human (0.8 mm) were segmented into tissue masks namely scalp, skull, csf, 

gray matter, white matter, cerebellum, hippocampus, thalamus, and air using Simpleware 

(Synopsys Inc., CA) by combining both automatic and manual morphological segmentation filters, 

and a volumetric FEM model was generated. SCS leads were then epidurally positioned over the 

targeted vertebrae level (lower cervical spine level and proximal to the mediolateral midline). We 

used voxel-based meshing algorithms which generated overly dense adaptive tetrahedral meshes 

of the brain slice chamber and the intricate animal models. The final mesh quality after multiple 

mesh refinements (within 1% error in voltage and current density at the spinal cord) was greater 

than 0.9 (COMSOL metric for mesh quality) indicating optimal elements in all models, and 

contained approximately 320000, 5950000, 22000000, 32200000 tetrahedral elements for slice 

chamber, rat, cat, and human model, respectively. The resulting volumetric meshes were later 

imported into COMSOL Multiphysics 5.1 (COMSOL Inc., MA, USA) to generate a finite element 

method (FEM) models. The models were computationally solved using Laplace equation for 

electric current physics (∇(σ∇V)=0), where V= potential and σ = conductivity) as field equation 

under stead-state assumption. Assigned material properties (electrical conductivities) for brain 

slice chamber, spinal tissues and electrode/lead were based on prior literature (Bikson et al., 2015; 

Song et al., 2015; Zannou et al., 2018).   

In the brain slice chamber model, we simulated two parallel Ag/Agcl electrode placed 

laterally in a saline bath and applied normal current density equivalent to 1 mA ((J.n)* Areaanode 

= 1 mA) through one electrode (anode) while grounding the other electrode (cathode). The external 

boundaries of the brain slice chamber were electrically insulated (J.n = 0). In the rat, cat, and 

human SCS model, boundary conditions were applied in a bipolar configuration as: normal current 
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density at the exposed boundary of E4 (anode: 1 mA), ground at the exposed surface of E1 

(cathode), insulation on all other external surfaces of the spinal cord and the peripheral tissues, and 

continuity for internal boundaries. We set the relative tolerance (convergence criteria) of each 

model to 1x 10-6 to get the most accurate solution while minimizing the errors. Corresponding 

voltage and electric fields were quantified from the simulations. 

6.4. Results 

Using exemplary computational models of the slice chamber with parallel electrodes and 

of rat, cat, and human with scaled cylindrical electrodes positioned epidurally over the targeted 

lower cervical vertebral column, the voltage and electric field intensity at the spinal cord and its 

peripheral tissues were predicted. Slice chamber FEM model predicted 0.22 V peak voltage and 

0.01 V/mm electric field intensity. Predicted peak electric field around the lead (epidural space), 

csf, and spinal cord were 20, 7, and 1.02 V/mm, respectively for the rat model. For the cat model, 

predicted peak electric field intensity was 4.4, 0.14, and 0.06 V/mm at the epidural space, csf, and 

the spinal cord, respectively. Human SCS model predicted field intensities at the epidural space, 

csf and spinal cord of 15, 0.09, 0.06 V/mm respectively. Within the spinal cord, the electric field 

dropped to 50% of its peak intensity caudo-rostrally at 0.73 mm, 1.3 mm, and 1.5 mm and 

mediolaterally at 0.45 mm, 0.9 mm, and 0.85 mm distant from the peak intensity location for the 

rat, cat, and human respectively. The predicted electric field was only uniform in the slice chamber 

while, as expected, in the animal and human SCS the predicted electric field intensities were non-

uniform - even on the scale of a single spinal neuron or axon (Hofstoetter et al., 2013; Holsheimer, 

2002; Ladenbauer et al., 2010; Miranda et al., 2016; Rattay et al., 2000).   

6.5. Discussion 
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The central proposition of this paper is that because it is not possible to reproduce the 

electric field distribution along diverse potential neuronal targets, the quasi-uniform assumption 

supports design and interpretation of animal models of SCS, (Fig. 39). A corollary of this 

proposition is the general applicability of considering the electric field magnitude as a meaningful 

predictor of neuronal activation. Each of these topics is considered separately below, but even to 

the extent detractors question the limits of the quasi-uniform assumption in general, then they 

acknowledge the limitations of translational animal models that necessitate this very assumption. 

The explicit goal of this paper is to explain the quasi-uniform assumption for translational animal 

research on spinal cord stimulation, with the broader and complex issue of general applicability 

addressed briefly (where an extended discussion beyond this paper scope). The computational 

models developed to illustrate the application of the quasi-uniform assumption largely confirm 

results from prior models (Holsheimer, 1998; Ladenbauer et al., 2010; Lempka et al., 2015; 

Miranda et al., 2016), and hardly capture the range of electrode configurations available; none-

the-less they serve to show conventional notions of activating function are untenable in scaling 

dose between animal and human trials. 

6.5.1. The quasi-uniform assumption in translational animal research  

The quasi-uniform assumption (Bikson et al., 2015, 2013) is based on a proportional 

relationship between neuronal excitation and the local electric field magnitude (Arlotti et al., 2012; 

Rahman et al., 2013; Rubinstein, 1993; Tranchina and Nicholson, 1986). To the extent 

investigators aim to quantitively match tissue-level measures of electrical potency across human 

and animal models, the quasi-uniform assumption is required in translational animal studies of 

SCS. During SCS, the electric field varies in a complex manner across the spine (Fig. 41). It is not 

technically feasible in animal or brain slice studies to replicate the electric field in all regions of 
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the spinal cord – since doing so would require applying a stimulation dose in given animal model 

that reproduces the voltage distribution across an arbitrarily large number of neuronal elements 

exactly as produced in human stimulation (despite gross difference in anatomy and cellular 

morphology). Since this is practically impossible, the solution is to select a clinical region of 

interest (e.g. dorsal horn at one segment level), predict the clinical electric field in that region of 

the spine, and then to replicate that electric field in an analogous region of the animal model. In 
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selecting one electric field in a region of interest, the quasi-uniform assumption is applied. This 

approach was rigorously (implicitly) applied for an ex vivo mouse SCS model (Idlett et al., 2019). 

 

Figure 41: Evaluation of the quasi-uniform assumption for SCS including brain slice, rat, cat, human, 

and clinical current flow simulation.  We developed computer-aided design (CAD) model of a slice 
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chamber, and a realistic MRI driven computational models of rat, cat, and human and predicted electric 

field and voltage across tissue. (A1) illustrates brain slice chamber with two parallel stimulating wires. (B1, 

C1) corresponding predicted peak voltage (0.22 V) and electric field intensity (0.01 V/mm) for the brain 

slice chamber in A1. (A2) MRI slice of a rat image with a SCS lead positioned epidurally along the lower 

cervical region. Segmented spinal cord tissues of the rat model (B2). (C2, D2) Cross-section view of 

predicted electric field and electric field streamlines plotted around the stimulating electrode contacts. (E2, 

F2) shows predicted peak electric field around the lead (epidural space: 20 V/mm) and the spinal cord (1.02 

V/mm) respectively. (A3, B3, C3, D3, E3, F3) illustrates SCS lead positioning, segmentation, and electric 

field prediction in a cat FEM model. (A4) represents SCS lead positioning at the cervical vertebrae of a 

human FEM model. (B4) represents spinal cord tissue segmentation. (C4, E4) shows electric field 

distribution across spinal tissues. (D4) illustrates uniformly seeded electric field streamlines from the leads 

to the spinal cord (peak: 0.06 V/mm). (F4) represents predicted electric field in the epidural space (peak: 

15 V/mm) and other peripheral spinal tissues. The key take-away of these predictions is not simply that 

peak electric field varies across species but that the spatial distribution of the electric field is complex and 

species specific, such that the electric field across species can only be matched in a selected ROI, not across 

all the spinal cord. 

There are two general alternatives to leveraging the quasi-uniform assumption. The first 

alternative is to scale electrode size and/or current applied by a factor related to an arbitrary 

measure of animal size. For example, using a 50-fold smaller electrode and/or 50-fold less current. 

But such approaches are not expected to produce comparable neuromodulation and are only as 

principled as the arbitrary scaling factors. It is not prudent to apply “smaller” stimulation (a smaller 

electrode and reduced applied current) heuristically because the resulting electric field may not be 

clinically meaningful in humans. The second alternative is, using an arbitrary electrode geometry, 

to titrate current intensity to produce an overt physiological response in an animal model – for 

example a motor response. This approach is underpinned by the assumption that grossly 
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reproducing an overt physiological response that can be related to a clinical side-effect (e.g. motor 

twitch), will also reproduce a neuromodulation outcome in regard to a behavioral endpoint (e.g. 

reduction in pain) comparable to clinical SCS. This is only the case when the overt physiological 

outcome is the same pathway are the behavioral outcome or when the two are coincidentally 

related. Instead, one could identify the neuronal elements (e.g. dorsal column axon collaterals) that 

presumably underlie the desired behavioral outcome in humans (e.g. reduction in pain), and then 

provide stimulation in animal models to activate those same neuronal elements. This process 

therefore approximate tissue level influence which, for the reasons stated above, requires the quasi-

uniform assumption. 

The process of applying the quasi-uniform assumption is therefore: 1) identify the 

candidate neuronal element presumed responsible for the clinical outcome of interest; 2) using 

computational FEM model of current flow, simulate SCS dose in human (Fig.  41) to predict the 

peak electric field magnitude on those elements; 3) select a practical electrode geometry to be used 

in an animal model; 4) simulate the intensity applied to that electrode geometry to produce in the 

comparable neuronal element in the animal model as the electric field generated clinically (Fig. 

41). For example, using the dorsal column as putative targets, for the specific electrode geometries 

considered in human and animal, we propose an intensity scaling factor of 17X and 1X to rat and 

cat. This workflow has limitations. Selecting which neuronal elements are relevant is an 

assumption, but a principled one that supports hypothesis testing. Special care is required in 

applying invasive micro-electrode stimulation in animal studies precisely because they produce 

highly non-uniform fields near the electrodes which may produce local activation unrelated to the 

neuronal elements of translational interest.  

6.5.2. The quasi-uniform assumption as a general marker of neurostimulation 
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There is a long-standing theoretical consideration of the role of electric field change along 

neuronal compartments, rather than simply electric field magnitude, to predict neuronal activation 

(Basser and Roth, 2000; Brocker and Grill, 2013; Ranck, 1975; Reilly et al., 1985). These 

conclusions derive from considering of long, uniform, straight peripheral axons subject to 

stimulation with proximal micro-electrodes (Frijns et al., 1994; Rubinstein and Spelman, 1988). 

This formalism has been extended to more complex neuronal geometries and macro-electrode, 

including epidural spinal cord stimulation (Graham et al., 2019a; Holsheimer, 1998; Howell et al., 

2014; Kent et al., 2014; N. Khadka et al., 2019; Lee et al., 2011). But it is well accepted that an 

axon termination or bend (Arlotti et al., 2012; Chakraborty et al., 2018; McNeal, 1976; 

Mourdoukoutas et al., 2018; Rubinstein, 1993; Tranchina and Nicholson, 1986), an axon traversing 

tissues of sufficient different resistivities (Capogrosso et al., 2013a; Danner et al., 2011; 

Ladenbauer et al., 2010; Miranda et al., 2007; Mourdoukoutas et al., 2018; F. Rattay et al., 2000; 

Struijk et al., 1993c), and overall compact neuronal structures (Aberra et al., 2018; Chan et al., 

1988; Radman et al., 2009b, 2009a; Struijk et al., 1993c; Tranchina and Nicholson, 1986) will all 

effectively respond to the local electric field magnitude. Coburn (1985) notes “sharp turns in the 

path of the fiber itself can be equally influential [to extracellular potential changes] (Coburn, 

1985)”.  Similarly noted is a characteristic feature of “dorsal column nerves fibers is the presence 

of myelinated collaterals perpendicular to the rostro-caudal fibers” such that activation by SCS is 

“significantly influenced by the presence of the collateral” (Struijk et al., 1992). Foundational texts 

on stimulation emphasize regions of curvature (e.g. bending of the spinal root) and changes in 

tissue environment (e.g. axons crossing from cerebrospinal fluid to white matter, or into the 

epidural space and vertebral bone) produce effective sensitivity to electric field magnitude (F. 

Rattay et al., 2000). The more detailed model precision, the more electric field magnitude 
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dependent effects emerge. Finally, it is not simply that terminal polarization, bends, and other 

changes in morphology or environment track electric field magnitude, but to the extent that these 

regions are then the most sensitive to stimulation, they will determine activation threshold for the 

entire neuron.  

Indeed, detailed experimental analysis of central stimulation in animals supports electric 

field-based mechanism. This includes in vivo data evaluation that the threshold current as a 

function of distance from stimulation electrode, where increase in threshold with the square of 

distance is consistent with electric field-based stimulation (Nowak and Bullier, 1996). This 

distance-threshold relationship is remarkably accurate and reproduced across CNS structures 

(Armstrong et al., 1973; Hentall et al., 1984; Marcus et al., 1979; Nowak and Bullier, 1996; Stoney 

et al., 1968), including spinal cord (Gustafsson and Jankowska, 1976; Jankowska and Roberts, 

1972; Joucla et al., 2012; Stoney et al., 1968). This relationship is so well established that it has 

been used for decades, to characterize the cellular targets of stimulation (e.g. the “k” value; 

(Armstrong et al., 1973; Hentall et al., 1984; Kubin and Davies, 1988; Marcus et al., 1979; Nowak 

and Bullier, 1996; Yeomans et al., 1986)). Additionally, decades of in vitro data applying uniform 

electric field (with zero electric field gradient) have characterized neuromodulation including 

oscillations, synaptic processing, and plasticity (Bikson et al., 2004; Kronberg et al., 2017). 

Trancutaneous spinal cord stimulation may also rely on locally uniform electric fields (Danner et 

al., 2011; Lesperance et al., 2018; Priori et al., 2014). 

Model driven optimization for non-invasive electrical stimulation has almost universally 

relied (implicitly) on the quasi-uniform assumption, including models for transcranial Direct 

Current Stimulation (tDCS; (Abhishek Datta et al., 2009; Dmochowski et al., 2011)), transcranial 

Alternating Current Stimulation (tACS; (Rampersad et al., 2019; Reato et al., 2010)), and 
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Transcranial Magnetic Stimulation (TMS; (Gomez et al., 2018; Thielscher et al., 2011)), 

Electroconvulsive Therapy (ECT; (Bai et al., 2017, 2012; Lee et al., 2016)) – with few notable 

deviations (Miranda et al., 2007; Salvador et al., 2011). In modeling deep brain stimulation, the 

quasi-uniform assumption has been leveraged (Astrom et al., 2015; Chaturvedi et al., 2010; Cubo 

et al., 2019) in cases of constrained optimization methodology or to avoid computational 

complexity (e.g. software for clinical practice). In most computational model of Spinal Cord 

Stimulation, non-uniform electric field is coupled to neuron morphology (Holsheimer, 2002a; 

Lempka et al., 2019b), though optimization or validation of new SCS approaches can rely on 

(quasi-uniform) electric field distribution. (Anderson et al., 2019; Coburn, 1985; Hernández-

Labrado et al., 2011; Huang et al., 2014) 

6.5.3. Inevitability of the quasi-uniform in translational animal models 

None of this discussion should be taken to diminish the value of detailed SCS modeling 

which has become increasingly complex from pioneering work by Holsheimer and colleagues 

(Holsheimer and Struijk, 1991; Holsheimer and Wesselink, 1997) and Coburn and colleagues 

(Coburn, 1985, 1980) to contemporary efforts (Durá et al., 2019; Lempka et al., 2015, 2019b; Min 

et al., 2014; Xu et al., 2017). When the functional models are used to prescribe optimal dose, it is 

an open question of how much does the detailed model verse (quasi-uniform) electric field-based 

analyses lead to distinct outcomes? With the latter lending themselves to closed-form (linear) 

optimization (Dmochowski et al., 2011) and fast (clinician toolbox) stimulation. Regardless, the 

scope of this paper is limited to consider the use of the quasi-uniform assumption in translational 

animal research. This, while the broader discussion about when polarization by electric field 

magnitude is relevant, we posit that the quasi-uniform assumption is not simply a principled, but 

an inevitable concept if tissue level electrical forces are to be rationally matched across specifics 
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using computational models. As discussed, modeling and experimental studies support that in a 

complex ‘soup’ morphology, electric field magnitude indeed predicts maximal polarization (e.g. 

E𝜆; (Rattay, 1986)) including compact neuron polarization (Joucla and Yvert, 2009), axon 

terminations (synapse) and bends (e.g. at roots). In any case, it is practically impossible to replicate 

SCS electric field changes across even a single hypothetical spinal neuron between species – much 

less across the entire population of neurons – make the quasi-uniform assumption a technical 

necessity in those translational animal models that want to relate tissue level measures of 

stimulation intensity. Ultimately, the question of when and how electric field magnitude can be 

used as a surrogate for neuromodulation efficacy in SCS is a broad and ambitious question, and 

the argument of this paper is only to present the quasi-uniform assumption as one tool to support 

meaningful translational studies on SCS. 
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Appendix 7: Bio-Heat Model of Kilohertz-Frequency Deep Brain 

Stimulation Increases Brain Tissue Temperature 

7.1. Outline 

This Appendix test the hypothesis that 10 kHz-DBS modulates neuronal function through 

moderate local tissue heating, analogous to kilohertz spinal cord stimulation (10 kHz-SCS). A 

version of this study has been published (Khadka et al., 2020). In order to establish the role of 

tissue heating in 10 kHz-DBS (30 µs, 10 kHz, at intensities of 3-7 mApeak), we characterize the 

range of temperature changes during clinical kHz-DBS protocols using computational study. We 

concluded that subject to validation with in vivo measurements, neuromodulation through a heating 

mechanism of action by 10 kHz-DBS can indicate novel therapeutic pathways and strategies for 

dose optimization. 

7.2. Introduction 

In the first study examining deep brain stimulation (DBS) at 10 kHz frequencies (10 kHz-

DBS; also called ultra-high frequency DBS), we reported acute 10 kHz-DBS appears safe and may 

be effective in improving motor symptoms in patients with movement disorders (Harmsen et al., 

2019).  Furthermore, 10 kHz-DBS stimulation may have the potential to reduce stimulation-

induced adverse effects, such as transient paresthesia and impaired speech, which are often 

encountered with DBS at conventional frequencies (Fagundes et al., 2016; McIntyre et al., 2015; 

Lozano et al., 2019). Selecting the optimal stimulation frequency for DBS can be challenging. 

Perceived loss of DBS efficacy at low kHz (< 5 kHz) derives from historical findings in limited 

parameter space (e.g. voltage-controlled, specific duty cycle)(Benabid et al., 1991), which was 
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supported by models of conventional mechanisms of action (Couto and Grill, 2016). Another 

factor that encourages the use of lower DBS frequencies is battery life (Ramasubbu et al., 2018); 

we note that increased power consumption is delivered into the electrode and subsequently into 

the surrounding deep brain tissue (Cubo et al., 2019).  

The emergence of spinal cord stimulation (SCS) at 10 kHz (Al-Kaisy et al., 2014; Crosby 

et al., 2017; Kapural et al., 2016; Shechter et al., 2013; Song et al., 2014) has encouraged the 

exploration of novel neuromodulation mechanisms, including our hypothesis of tissue warming, 

based on the relatively high-power nature of clinical 10 kHz waveforms (Zannou et al., 2019b). 

Since heating of deep brain tissue will impact a myriad of neuronal functions linked to clinical 

efficacy (see Discussion), a pivotal step to establishing the role of moderate local heating in 10 

kHz-DBS is predicting the degree of temperature increases. To this end, we expanded on our 

earlier phantom-verified bio-heat model of conventional rate DBS (Maged M. Elwassif et al., 

2006a; Elwassif et al., 2012a), incorporating detailed MRI-derived representation of 

inhomogeneous local tissues, and emulating clinical 10 kHz-DBS protocols.  

7.3. Methods 

7.3.1. Bio-heat DBS model construction and solution method 

High resolution magnetic resonance imaging (MRI) scans of standard human head 

(unsampled to 0.18 mm) were segmented (Simpleware, Synopsys Inc., CA, USA) into the 

following tissue masks : skin; skull; CSF; air; gray-matter; white-matter; cingulate gyrus; basal 

ganglia; corpus callosum; thalamus; subthalamic nucleus (STN); fornix, nucleus accumbens; 

hippocampus; amygdala; midbrain; mammillary bodies; pons; medulla oblongata; and insula. 

Computer-aided design (CAD) model of a clinical DBS lead (Medtronic 3387; 4 contact (0,1,2, 
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and 3) Pt/Ir DBS lead, contact length: 1.5 mm, inter-contact distance: 1.5 mm, diameter: 1.27 mm) 

was modelled (SolidWorks, Dassault Systemes Corp., MA, USA) and imported into the head 

model. A 0.5 mm thick encapsulation layer around the DBS lead with standard assigned 

conductivity (0.13 S/m) matched clinical impedance values (~1 kΩ) (Grill and Mortimer, 1994). 

The lead penetrated from the top of the skull at ~20 mm from the midline to the STN target at ~12 

mm from the midline. Approximately 7 mm of the STN was contacted around the lead: contact 0 

(deepest contact) was at the ventral border of the STN, contacts 1 and 2 were inside the STN, and 

contact 3 was at the dorsal border of the STN (Fig. 42). The volumetric conductor model was then 

meshed using a voxel-based meshing algorithm, and an adaptive tetrahedral mesh of the head was 

generated following multiple mesh densities refinements (within in 1% error in voltage and current 

density at the STN).  

 

The stimulation (Laplace equation for electrostatics (∇(𝜎∇𝑉) = 0 where V is potential and 

σ is conductivity) coupled Pennes’ bioheat transfer equation (Equation 1) including joule heating, 

metabolic heat generation rate (Qmet), and blood perfusion rate (ωb) in the brain tissues was solved.  

𝜌𝐶𝑝𝛻𝑇 = ∇. (𝜅∇𝑇) − 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏) + 𝑄𝑚𝑒𝑡 + 𝜎|∇𝑉2|                 (1) 

 

where 𝜌, 𝐶𝑝, T, σ, and κ represent tissue density, specific heat, temperature, electrical conductivity, 

and thermal conductivity respectively.  

Blood density (𝜌𝑏), specific heat (𝐶𝑏), and temperature (𝑇𝑏) were assumed constant in all 

vascularized brain tissues with corresponding values as 1045 kg/m3, 3600 J/(kg. K), and 36.7 0C, 

respectively. Tissue specific perfusion rate (𝜔𝑏) ranged from 0.00063 - 0.0228 s-1 (Collins et al., 

2004b; Xu et al., 1999b). Prior to the application of 10 kHz-DBS, the Qmet required to balance the 
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initial brain temperature was calculated using Equation 2 (Hodson et al., 1989a; Wilson and 

Spence, 1988b): 

𝑄𝑚𝑒𝑡 = 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇 − 𝑇𝑏)                           (2) 

where Tb and T are initial blood and brain temperature.  

The calculated Qmet values from Equation 2 for the corresponding ωb values of the brain 

tissues were: grey matter (𝜔𝑏 , 0.018 s−1;  𝑄𝑚𝑒𝑡, 15540 Wm−3); white matter, corpus callosum, 

fornix, mammillary bodies (𝜔𝑏, 0.008 s−1;  𝑄𝑚𝑒𝑡, 4320 Wm−3); hippocampus 

(𝜔𝑏 , 0.00063 s−1; 𝑄𝑚𝑒𝑡, 15540 Wm−3); midbrain (𝜔𝑏 , 0.028 s−1;  𝑄𝑚𝑒𝑡, 11370 Wm−3); basal 

ganglia, thalamus, amygdala, cingulate, nucleus accumbens 

(𝜔𝑏 , 0.02282 s−1;  𝑄𝑚𝑒𝑡, 15540 Wm−3; ); and, STN (𝜔𝑏 , 0.02038 s−1;  𝑄𝑚𝑒𝑡, 13930 Wm−3).  

Since CSF is avascular and enCAP is predominantly scar tissues, 0 values were assigned for 

𝑄𝑚𝑒𝑡, and 𝜔𝑏 were assigned. The balanced Qmet values approximated prior experimental 

measurements (Collins et al., 2004b; Dusan Fiala et al., 1999; Xu et al., 1999b). 

Thermo-electric properties (σ, κ) of the biological tissues were based on the following 

aggregate literature values (“Dielectric Properties » IT’IS Foundation,” n.d.; Gabriel et al., 1996a): 

CSF (1.65 S/m, 0.57 W/(m.K)); grey matter, STN, thalamus, amygdala, basal ganglia, nucleus 

accumbens, and cingulate gyrus (0.276 S/m, 0.55 W/(m.K)); midbrain (0.126 S/m, 0.51 W/(m.K)); 

white matter, mammillary bodies, and fornix (0.126 S/m, 0.48 W/(m.K)); hippocampus (0.126 

S/m, 0.55 W/(m.K)); corpus callosum (0.060 S/m, 0.48 W/(m.K)); and, enCAP (0.13 S/m, 0.47 

W/(m.K)). Electrical and thermal conductivities of the DBS contacts and insulating bands between 

contacts were (4E6 S/m, 31 W/(m.K)) and (0.0002 S/m, 0.026 W/(m.K)), respectively (Butson and 
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McIntyre, 2006). In some simulations the “standard” tissue conductivity parameters of enCAP and 

STN were manipulated by either doubling or halving. 

Static RMS values were applied (Equation 3) for tested clinical kHz-DBS intensities (3-7 mApeak 

at 30 µs and 10 kHz), and this approach was supported by prior phantom verification for 

conventional DBS (Elwassif et al., 2012a) and kHz-SCS (Khadka and Bikson, 2019; Zannou et 

al., 2019a).   

IRMS =    𝐼𝑃𝑒𝑎𝑘√𝑡 ∗ 𝑓 = 𝐼𝑃𝑒𝑎𝑘√𝐷        (3) 

              

where IRMS is the corresponding RMS value of peak stimulation intensity (Ipeak), t is the combined 

(anodic and cathodic phase) pulse width, f is the frequency, and D is the duty cycle.  

Unless otherwise stated, contact 2 (C2) was energized in a monopolar electrode 

configuration as tested clinically (Harmsen et al., 2019). An inward normal current density (Jnorm, 

RMS) was applied to the electrode with the bottom surface of the model grounded. For bipolar 

electrode configuration, contact 2 (C2) was energized (anode) while contact 1 (C1) was grounded 

(cathode). Remaining outer boundaries of the head were electrically insulated. The temperature of 

the outer boundaries of the model was set to core body temperature (37 oC) with no convection 

across outer head boundaries (M.M. Elwassif et al., 2006). The bio-heat 10 kHz-DBS model was 

then solved under the steady-state assumption and the corresponding temperature increases and 

field intensities were predicted. Temperature difference (ΔT) was calculated by subtracting tissue 

temperature increase by stimulation (joule heat) from tissue temperature increase without 

stimulation. 
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Figure 42: FEM bio-heat model predicts temperature increases during kHz-DBS. (A1) A high-

resolution human head model with segmented brain tissues and a DBS lead. For the illustration 

purpose, only STN (purple) and thalamus (green) are shown. (A2) Inset details model anatomy, showing 

the STN (1), thalamus (2), DBS lead (3) at the STN target, and an encapsulation layer (4). (A3) Clinical 

DBS lead (Medtronic DBS 3387) with contact C2 energized in a monopolar electrode configuration. (A4) 

Clinical DBS waveform at 10 kHz with 30 µs pulse width per phase, resulting in a 5.48 Pulse Compression 

Factor (PCF) with 60 % duty (see 14 for details).  Predicted temperature increases with heat flux streamlines 
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(A5) and electric field distribution with current streamlines (A6) across deep brain tissues at 5 mApeak (3.8 

mA RMS). 

7.3.2. Volume of tissue activated (VTA) and Volume of tissue heated (VTH) 

An activating function based approach (second derivative of the electric potential) was 

implemented to estimate the volume of tissue activation (VTA) for conventional rate (130 Hz) 

DBS (Butson and McIntyre, 2006, 2005; Chaturvedi et al., 2010; Rattay, 1986). Specifically, the 

divergence of the gradient of the electric potential (∇ 2Ve) (generalization of the second derivative 

of the electric potential in 3D) was used to approximate the VTA (Astrom et al., 2015; Butson and 

McIntyre, 2006; Chaturvedi et al., 2010; Hemm et al., 2005; Horn et al., 2017). Activation 

threshold levels for different axon diameters (0.36 V/mm2 corresponding to 2.5 µm or 0.82 V/mm2 

corresponding to 5 µm) at conventional rate DBS were implemented to define the VTA (Astrom 

et al., 2015). For volume of tissue heated (VTH) at 10 kHz-DBS, a ΔT threshold of 0.1 0C or 0.5 

0C was considered. Both VTA and VTH were determined at 3, 5, and 7 mA peak with monopolar 

and bipolar stimulation (Fig. 44).  

 

7.4. Results 

We developed an MRI-derived finite element method (FEM) bio-heat computational 

model of 10 kHz-DBS, with tissue specific electrical and thermal (passive and blood flow) 

properties (Fig. 42). For each simulation, RMS current intensities that corresponded to clinically 

tested peak current intensities were applied to the model. Predicted peak temperature (ΔT) in the 

encapsulation layer (enCAP) and subthalamic nucleus (STN) increased supra-linearly as a function 

of stimulation intensity (standard tissue parameters, Fig. 43), reasonably fit by a power 
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law(Zannou et al., 2019b). Under standard tissue parameters, monopolar kHz-DBS at 2.3 mARMS 

(3 mApeak) produces 0.13 oC temperature rise in the enCAP and 0.10 oC at the STN. At 3.8 mARMS 

(5 mApeak) temperature increases by 0.83 oC in the enCAP and 0.62 oC at the STN. Finally, at 5.4 

mARMS (7 mAp) the temperature increases by 1.87 oC in the enCAP and 1.38 oC at the STN. 

 

Figure 43: Stimulation intensity (RMS) versus temperature increases at encapsulation (enCAP) and 

subthalamic nucleus (STN). An MRI-derived FEM model of kHz-DBS predicts ΔT increases supra-

linearly (β > 1) with kHz-DBS RMS intensities 14. Results were fit according to a power law. 

For 10 kHz monopolar DBS with 3.8 mARMS (5 mAp) intensity, we considered the 

sensitivity of heating to model tissue parameters, specifically doubling or halving the electrical 

and/or thermal conductivities of either the STN or enCAP (Table 5).  Decreasing the electrical or 

thermal conductivity of either STN or enCAP always increased heating of both STN and enCAP. 

Heating of both the STN and enCAP was the most sensitive to reducing enCAP electrical 

conductivity (enCAP; σ/2, Ƙ)- namely, heating the 10 kHz-DBS increased the most with reducing 

enCAP conductivity compared to any other tissue parameter tested. STN heating was next more 
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sensitive to reducing STN thermal conductivity (STN; σ, Ƙ/2) while enCAP heating was next more 

sensitivity to reducing enCAP thermal conductivity (enCAP σ, Ƙ/2). Maximum temperature rises 

in both STN (1.35 oC) and enCAP (2.53 oC) were predicted for enCAP σ/2, Ƙ/2. Minimal 

temperature rises in both STN (0.02 oC) and enCAP (0.10 oC) were predicted for STN 2σ, 2Ƙ. In 

any combination tested, the ΔT was always higher in enCAP compared to the STN, except the (2σ, 

2Ƙ) condition where heating in the STN was slightly greater than enCAP. 

Activation thresholds corresponding to either 2.5 µm or 5 µm axon diameter stimulation at 

conventional rate DBS (130 Hz) defined the VTA. VTH thresholds of ΔT 0.1 0C and 0.5 0C were 

applied for 10 kHz-DBS. As a first approximation, under the assumptions simulated here, the 

volumes of VTA and VTH are comparable for the same dose. This may suggest that stimulation 

and heating have some additive effect in neural activation (neuromodulation). For a given current 

intensity and VTA/VTH threshold, both VTA and VTH roughly doubled for bipolar vs monopolar 

montages. Both VTA and VTH increased supralinearly with stimulation intensities (3,5,7 mA 

peak) and both bipolar and monopolar electrode configurations. For 7 mA (peak) bipolar and 

monopolar electrode configuration, the VTA and VTH spread beyond the STN. With monopolar 

130 Hz DBS, the VTA were 14.15, 31.63, and 54.54 mm3 at 0.36 V/mm2 activation threshold, and 

2.15, 5.83, and 10.81 mm3 at 0.82 V/mm2 activation threshold, for 3, 5, and 7 mA, respectively. 

The VTA for bipolar 130 Hz DBS at 3,5, and 7 mA intensities were 28.51, 58.21, and 90.94 mm3 

at 0.36 V/mm2 threshold, and 4.53, 12.33, 22.28 mm3 at 0.82 V/mm2 threshold. When thresholding 

at 0.1 0C, the VTH for monopolar 10 kHz DBS were 2.61, 39.29, and 135.19 mm3 and at a threshold 

0.5 0C, the VTH were 0, 5.34, 23.55 mm3 for 3, 5, and 7 mA peak, respectively. For a bipolar 10 

kHz DBS, the VTH were 9.69, 135.66, and 298.23 mm3 at 0.1 0C threshold, and 0, 20.62, and 

82.99 mm3 at 0.5 0C threshold for 3,5, and 7 mA peak respectively (Fig. 44).  
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7.5. Discussion 

Our initial clinical findings on kHz-DBS are of interest because they open up a new 

therapeutic stimulation parameter space for future study and development (Harmsen et al., 2019). 

A heating mechanism of action (MoA) augments such considerations. For example, since heating 

depends only (and supra-linearly) on waveform RMS independent of other parameters, optimal 

electrode placement and lead resistance may differ following heating versus conventional MoA.  

The biophysics of heating are analogous to experimentally-verified prior simulations of 

conventional rate DBS (Elwassif et al., 2012a; Maged M. Elwassif et al., 2006a) and kHz SCS 

(Khadka and Bikson, 2019; Zannou et al., 2019b, 2019a), however comparisons highlight the 

importance of stimulation dose (electrodes and waveform) as well as tissue anatomy and 

parameters. Compared to monopolar stimulation, energizing an adjacent contact in a bipolar 

electrode configuration may further increase temperature (Maged M. Elwassif et al., 2006a). This 

is compounded by reduced inter-electrode distances (e.g. Medtronic 3389 vs 3387 lead designs) 

(Maged M. Elwassif et al., 2006a). In kHz-SCS, the highly resistive epidural space plays a central 

role in temperature increases both at the lead and at the spinal cord (Zannou et al., 2019b).  Here, 

the encapsulation layer plays a similar role in kHz DBS (Table 5)- namely, despite the difference 

in anatomy in both cases a high resistive tissue at the electrode surface increases joule heat 

deposition, which is then conducted to more distant tissue (Philpott et al., 2017). 
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Figure 44: Activating function based VTA at conventional rate DBS (130 Hz at 60 µs), and VTH at 

10 kHz-DBS with monopolar or bipolar electrode configuration at 3, 5, 7 mA peak with different 

thresholds. VTA and VTH both increase supralinearly with stimulation intensities and expand twice with 

bipolar montage vs monopolar montages. 
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enCAP conductivity sensitivities STN conductivity sensitivities 

Conductivities 
ΔT (0C) 

Resistance (Ω) 
ΔT (0C) 

Resistance (Ω) 
enCAP STN enCAP STN 

(σ, Ƙ) 0.83 0.62 747 0.83 0.62 747 

(σ, Ƙ/2) 1.22 0.66 747 1.18 1.00 747 

(σ, 2Ƙ) 0.60 0.55 747 0.61 0.36 747 

(2σ, Ƙ) 0.36 0.28 520 0.77 0.55 660 

(2σ, Ƙ/2) 0.56 0.30 520 1.09 0.91 660 

(2σ, 2Ƙ) 0.23 0.24 520 0.10 0.02 660 

(σ/2, Ƙ) 1.77 1.27 1175 0.95 0.72 885 

(σ/2, Ƙ/2) 2.53 1.35 1175 1.34 1.15 885 

(σ/2, 2Ƙ) 1.31 1.14 1175 0.70 0.44 885 

 

Table 5: Conductivity sensitivities analysis at 3.8 mARMS (5 mAp) of the encapsulation layer 

(enCAP) and subthalamic nucleus (STN). Properties of the enCAP (left) or STN (right) were changed 

independently with resulting heating (ΔT) of both enCAP and STN reported. Tissue electrical conductivity 

(σ) and/or thermal conductivity (Ƙ) were doubled or halved. Total lead resistance (Ω) for each condition is 

also reported. 

Notably, while increasing tissue resistivity increases heating for current-controlled 

stimulation, increasing tissue resistivity decreases heating for voltage-controlled stimulation 

(Maged M. Elwassif et al., 2006a). As such, the enCAP may increase heating under current-control 

while decreasing heating under voltage-control. All these device and tissue parameters interact; 

for example, voltage-controlled DBS at conventional rates with low impedance (minimal 

encapsulation layer) may also produce significant heating (Elwassif et al., 2012a; Maged M. 

Elwassif et al., 2006a). However, by virtue of a higher Pulse Compression Factor (PCF; (Zannou 

et al., 2019b)), kHz-DBS can achieve higher temperature. FDA guidelines for MRI-safety allow 

less than 2 0C over 1 hour of exposure at 1.5 T and 3.0 T frequencies (Health, 2019) with MRI 

compatible system resulting in 0.3 - 3.6 0 C (Golestanirad et al., 2019; Kainz et al., 2002). 
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Functional tissue ablation specifically using DBS leads involves RMS intensities of 19 or more 

mA, produced peak heating of ~ 69.52 0C per our quadratic standard model. Generally, RF-ablation 

of deep brain aims for 42 - 49 0C, though interestingly transient increases to 45 0C can produce 

reversible functional lesions (Brodkey et al., 1964). Animal studies indicate reversible functional 

lesioning, for short exposures, at temperatures > 46 0C (Eve, 1900). 

The precise degree of heating during kHz DBS will depend on lead design, electrode 

selection, waveform (RMS), and passive and active tissue properties (Table 5, Fig. 42, 44). 

Nevertheless, the DBS bioheat models developed here support predicting and optimizing heating 

across DBS approaches. This can be informed and contrasted to models of conventional-rate (e.g. 

130 Hz) DBS. In general, for both VTA and VTH one can consider the brain area of modulation 

(perimeter of volume maps) and the nature of neuromodulation within the volume (threshold used 

for given volume map). Whereas for VTA this analysis addresses fiber activation of various types 

(predicted by activating function threshold) for VTH this analysis will depend on yet-unspecified 

neurophysiological process (predicted by temperature threshold). Both VTA and VTH increase 

supralinearly with intensities (Fig. 44; (Butson et al., 2007)) and expand ~2x with bipolar vs 

monopolar montages (Fig. 44; (Grant and Lowery, 2009; Walckiers et al., 2010)). Increases in 

tissue resistivity (for example enCAP or STN resistivities) increases both VTA and VTH under 

current-controlled stimulation, while decreasing both VTA and VTA under voltage-controlled 

stimulation (data not shown; (Butson et al., 2006)). Depending on dose, either VTH or VTA may 

expand beyond the (targeted) STN, with implications for efficacy or the therapeutic window (Fig. 

44; (Frankemolle et al., 2010; McIntyre et al., 2004a, 2004b; McIntyre and Thakor, 2002)).  

While the specific mechanisms of heating-based neuromodulation (at different VTH 

temperature thresholds) remains to be shown, the principle of heating-based neuromodulation is 
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established. All brain tissues are sensitive to temperature variations. Neuronal excitability, 

neurotransmitter function and plasticity, underlying metabolic functions, and connectivity and 

synchronization, are all modulated by heating (Kim and Connors, 2012b; Harris et al., 1962b; 

Matsumi et al., 1994b; Chowdhury et al., 2014b; Graham et al., 2008). Indeed there is a long 

standing record of neuromodulation techniques that are associated with heating and reversible 

changes in brain excitability including transcranial focused ultrasound (Darrow et al., 2019) and 

infrared stimulation (Duke et al., 2013). A heating DBS MoA suggests multiple plausible 

therapeutic pathways. Validating temperature increases with in vivo measures and characterizing 

such novel therapeutic cascades would suggest new avenues for DBS neuromodulation. 

Optimization approaches may approximate or  differ from those based on conventional 

mechanisms (VTA vs VTH) (Alonso et al., 2016; Chaturvedi et al., 2010; R. Cubo et al., 2016), 

including the role of impedance in voltage vs current control (Lempka et al., 2010), impact of 

smaller electrodes as used in directional needs (Anderson et al., 2018; Rubén Cubo et al., 2016; 

Dembek et al., 2017; Pollo et al., 2014), and waveforms not dependent on pulse characteristics 

(Foutz and McIntyre, 2010). Computational models are both subject to experimental verification 

and underpin animal and human trials on mechanism of action (Grill, 2018; Howell et al., 2019; 

Kim et al., 2015; Lozano et al., 2019; Oza et al., 2018; Ramirez-Zamora et al., 2019; Wei and 

Grill, 2009), such that the novel theoretical framework developed here informs new avenues of 

DBS research and optimization. Tissue heating during kHz DBS would interact with any 

coincident theoretical mechanisms of action (e.g. electro-permeation of the BBB (Lopez-Quintero 

et al., 2010), conduction block (Couto and Grill, 2016)). 
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Appendix 8: Realistic Anatomically Detailed Open-Source 

Spinal Cord Stimulation (RADO-SCS) Model 

8.1. Outline 

This Appendix describes an open-source spinal cord model with both unprecedented 

resolution (precision) and transparency (reproducibility). A version of this study has been 

published (Khadka et al., 2020). The resulting model calculations of the electric fields generated 

in the white-matter and gray matter, and the axonal activation thresholds are broadly consistent 

with prior simulations. Freely-available online, the RADO-SCS will be updated continuously with 

version control. 

8.2. Introduction 

8.2.1. Broad impact of an open-source high-resolution computational SCS model 

Computational models predict current flow patterns and neuronal activation during 

neuromodulation techniques, such as spinal cord stimulation (SCS) (Niranjan Khadka et al., 2019c; 

Khadka and Bikson, 2019; Lempka et al., 2015; Zannou et al., 2019b, 2019a). These models are 

key tools in designing, optimizing, and understanding SCS as they relate the controllable 

stimulation dose (i.e. electrode placement and waveform (Peterchev et al., 2012)) with the intended 

resulting activation of the spinal cord and nerves (Anderson et al., 2019; Zhang et al., 2014). 

Computational SCS models thus broadly inform modern clinical SCS practices, ongoing research 

into mechanisms of actions, and design of new interventions (Capogrosso et al., 2013b; 
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Holsheimer, 2002b, 1998; Holsheimer and Wesselink, 1997; Jensen and Brownstone, 2019; Lee 

et al., 2011; Struijk et al., 1993a; Zannou et al., 2019a, 2019b).  

Since the early 1980’s, models of SCS have been continuously refined and applied (Anaya 

et al., 2020; Anderson et al., 2019; Arle et al., 2016; Coburn, 1980; Coburn and Sin, 1985; Durá 

et al., 2019; Fernandes et al., 2019, 2018; Fiocchi et al., 2016; Hernández-Labrado et al., 2011; 

Holsheimer, 2002b; Howell et al., 2014; Huang et al., 2014; Kent et al., 2014; Ladenbauer et al., 

2010; Lee et al., 2011; Lempka et al., 2015; Miranda et al., 2016; Struijk et al., 1993a, 1993b, 

1991; Veizi et al., 2017; Wesselink et al., 1998; Zannou et al., 2019b) (see Table 6). Development 

of models of increasing complexity offered mirrored general enhancements in numerical modeling 

techniques (finite element analysis), with proprietary efforts by numerous groups, each subject to 

multiple version iterations. Without open-source model-geometry and a standard modeling 

pipeline, exact replication is difficult. Indeed, the more advanced (detailed) a model, the more 

intractable the model is to reproduce without source code. Moreover, even recent models can lack 

details of major anatomical structures of the spine.  

Here, we develop the first open-source and the most precise structural model for SCS 

simulation, called the Realistic Anatomically Detailed Open-source Spinal Cord Stimulation 

(RADO-SCS) model. The RADO-SCS pipeline uses computer aided design (CAD) derived files 

of spinal tissues, along with available devices renders, meshes, finite element method (FEM) 

results, and axonal activation simulations. One exemplary SCS clinical lead was modeled and 

placed epidurally. However, users can redesign and position SCS leads based on any device and 

intervention specifics. Under a Creative Commons Attribution 4.0 International (CC BY 4.0) 

license, an open-source tissue anatomical mask and device model STL files of RADO-SCS 3.0 

(current version) are available for free download from Zenodo.org 
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 (https://doi.org/10.5281/zenodo.3715368). Any model related inquiries or an additional model 

files download request are addressed through https://www.neuralengr.org/spinal-cord-stimulation. 

RADO-SCS supports simulation of any SCS dose (technology) and will be subjected to ongoing 

updates with version control in Zenodo.org.  

RADO-SCS supports stimulation of any SCS dose (technology) and will be subject to 

ongoing updates with version control. The more precise and complex a computational model, the 

more critical it is to share code for reproducibility and to prevent a need to redo the resource-

intensive creation effort. Use of RADO-SCS thus provides users with 1) a transparent and 

reproducible platform to base any claims; 2) evolving state-of-the-art precision to the best model 

quality; and 3) cost and time savings. RADO-SCS is a unique tool for supporting computer-driven 

device design, dose optimization, and an efficient clinical trial design. 

8.3. Methods 

8.3.1. State-of-the-art RADO SCS model 

Adding more details, increasing resolution and anatomical precision to earlier model 

versions (N. Khadka et al., 2019; Zannou et al., 2019a, 2019b), we developed the first RADO-SCS 

model, including additional spinal tissue compartments that were not previously 

developed/modelled. Adding these extra tissues will likely influence the current flow pattern from 

the SCS lead to the spinal cord or to another possible region of interest. We derived the dimensions 

and boundaries of tissue compartments of the RADO-SCS model from human cadaver studies, 

specifically from the lower thoracic spinal cord as discussed in our prior studies (Geddes and 

Baker, n.d.; Kameyama et al., 1996b; Zannou et al., 2019a, 2019b). In addition, we constructed 

some features, such as Lissauer’s tract, thoracic aorta, sympathetic chains, dorsal and ventral roots, 
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and rootlets based on physiological trajectory data (Bozkurt et al., 2012). The RADO-SCS model 

consists of major spinal canal and peripheral tissue compartments with basic, moderate, and 

enhanced anatomical precision: vertebrae (moderate precision), intervertebral (IV) discs (moderate 

precision), epidural space (moderate precision), epidural space vasculature (basic precision), dura 

mater (moderate precision), dural sac (basic precision), intraforaminal tissue (basic precision), 

CSF (moderate precision), white-matter (enhanced precision), spinal cord vasculature (basic 

precision), Lissauer’s tract (enhanced precision), gray matter (enhanced precision), dorsal and 

ventral root, rootlets (moderate precision), dorsal root ganglion (DRG) (moderate precision), 

sympathetic chain (trunk and ganglion) (basic precision), thoracic aorta and its branching (basic 

precision), peripheral vasculatures (basic precision), and soft tissues (basic precision) (Fig. 45).  

Specifically, we modelled and positioned three vertebrae and IV discs to mimic the T9-

T11 lower thoracic spine with an anatomical curvature and tissue specific flexion. We modelled 

four DRG lateral to the vertebrae (each side) in the rostro-caudal direction. The dorsal and ventral 

root converged together just beyond the DRG, while moving away from the cord to form a spinal 

nerve within the intervertebral foramen. These nerves and roots were surrounded by meninges and 

CSF. The dorsal and ventral rootlets emerged from the dorsal and ventral horn of the spinal cord. 

We constructed eight dorsal and eight ventral rootlets at each spinal level. We constructed the 

thoracic aorta (which supplies arterial  
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Figure 45: Computational FEM modelling and multi-compartment axon model pipeline of the RADO 

SCS model. (A) An outline of the T9-T11 spinal cord CAD geometry. (B) Constructed tissue compartments 

of the detailed SCS model. (C) Final mesh with adequate mesh quality. (D) FEM calculation of the 

extracellular voltage distribution generated at the surface of the spinal cord during SCS. (E) Multi-

compartment sensory axon model used to estimate the activation thresholds for different fiber diameters 

using the voltage distributions calculated with the FEM (panel modified from (McIntyre and Grill, 2002)). 

blood to the spinal cord) and its anastomotic network of radicular arteries that run along the dorsal 

and ventral roots of the spinal nerves. The radicular arteries further branched at the spinal cord. 

We constructed two sympathetic chains (trunk and ganglion) and we connected the nerve from 

each sympathetic trunk to the spinal nerve. Next, we constructed the dural sac/covering, a 
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membranous sheath that is part of the subarachnoid space, contains CSF, and surrounds the spinal 

cord. The outermost layer of the spinal tissue was an epidural space, which lies between dura mater 

and the vertebral wall and is a major spinal tissue compartment that predominately contains fat. 

We modelled miniature blood vessels within the epidural space. Next, we constructed dura which 

is the outermost layer of the meninges. Inside the dura was a layer of conductive CSF, which 

mimics the subarachnoid space that exists between the arachnoid and the pia mater. The inner most 

constructed tissue compartments were white-matter and gray-matter domains representing the 

spinal cord. We also included Lissauer’s tract, a white-matter pathway near the dorsal horn and 

lateral aspect of the dorsal columns. We then placed the T9-T11 thoracic spinal column inside a 

thorax/soft tissues. Finally, we modeled an eight-contact clinical SCS lead (diameter: 1.25 mm, 

electrode contact length: 3 mm, inter-electrode insulation gap: 1 mm) (Fig. 46) and placed it 1 mm 

distal to the mediolateral dorsal column midline at the T10 spinal level. 

8.3.2. Computational FEM model solution method 

To generate a FEM and correct for some tissue-specific anatomical anomalies (for e.g., 

overlapping, extrusion, smoothing) using morphological image processing filters, we imported the 

assembled SolidWorks (Dassault Systemes Corp., MA, USA) CAD model files along with the 

SCS leads into Simpleware (Synopsys Inc., CA, USA). We generated an adaptive tetrahedral mesh 

using built-in voxel-based meshing algorithms in Simpleware. We refined the mesh density until 

additional model refinement produced less than 1% difference the voltage and current density at 

the spinal cord. The resulting model consisted of approximately 150 million tetrahedral elements. 

To generate a FEM solution, we then imported the volumetric mesh into COMSOL Multiphysics 

5.1 (COMSOL Inc., MA, USA). For each model domain, we assigned the following electrical 

conductivities based on prior literature: vertebrae (0.04 S/m), intervertebral disc (0.60 S/m), 
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epidural space (0.04 S/m), epidural space vasculature (0.66 S/m), dura mater (0.037 S/m), dural 

sac (0.037 S/m), intraforaminal tissue (0.004 S/m), CSF (1.7 S/m), white-matter (isotropic: 0.1432 

S/m or anisotropic: 0.083 S/m (transverse) and 0.6 S/m (longitudinal)), spinal cord vasculature 

(0.66 S/m), lissauer’s tract (0.276 S/m or 0.083 S/m (transverse) and 0.6 S/m (longitudinal)), gray 

matter (0.276 S/m), dorsal and ventral root and rootlets (0.1432 S/m), DRG (0.1432 S/m), 

sympathetic chain (trunk and ganglion) (0.1432 S/m), thoracic aorta and its branching (0.66 S/m), 

peripheral vasculatures (0.66 S/m), soft tissues (0.004 S/m), metal electrodes (4 x 106 S/m), and 

lead insulation (2 x 10-5 S/m) (Chaturvedi et al., 2010; Niranjan Khadka et al., 2019; Zannou et 

al., 2019a, 2019b). We applied boundary conditions to represent bipolar SCS, with a 1 A load 

condition applied at electrode contact 3 (E3) while grounding electrode contact 5 (E5). We 

assigned insulating boundary conditions on all external model boundaries and continuity for the 

internal boundaries. We also assigned floating boundary conditions to the remaining inactive 

electrodes in the model that assumed an equipotential surface with zero net current. To determine 

the voltage distributions throughout the model, we then solved the Laplace equation (∇(σ∇V) = 0, 

where V is potential and σ is electrical conductivity) under a steady-state assumption. To improve 

solution accuracy, we set the relative tolerance to 1 x 10-6. Finally, we then exported the three-

dimensional (3D) extracellular voltage distributions calculated from the FEM and applied these 

voltage distributions to the axon models described below. 

8.3.3. Multicompartment cable model of sensory Axons 

We developed computer models of sensory axons within the dorsal columns of the spinal 

cord based on a previously-published model of a mammalian sensory axon for specific fiber 

diameters that were parametrized to reproduce action potential shape, conduction velocity, and 

strength-duration relationship for sensory axons (Fig. 45E) (Gaines et al., 2018; Graham et al., 
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2019b; Howells et al., 2012; McIntyre and Grill, 2002). Each sensory Aβ axon model was a double-

cable model consisting of nodes of Ranvier separated by three distinct myelin segments: the myelin 

attachment segment (MYSA), paranodal main segment (FLUT), and the internode regions (STIN). 

We distributed the sensory axon models throughout the white matter of the spinal cord 

using Lloyd’s Algorithm (Lloyd, 1982). The specific fiber sizes considered in our model matched 

the diameters explicitly parameterized in a previous study (McIntyre and Grill, 2002). We 

calculated the density of fibers in the model using histological measurements of fibers in the most 

superficial 300 µm of the dorsal columns (Feirabend et al., 2002). To reduce computational 

demand, we reduced the total number of fibers solved for this project to 1 % of anatomic density.  

To determine the activation thresholds for each individual fiber, we applied the 

extracellular voltages calculated in the FEM to our axon models using the software package, 

NEURON (Hines and Carnevale, 1997), within Python programming environment. We modeled 

the time-dependent output generated by an implantable pulse generator during current-controlled 

stimulation. To calculate the appropriate spatiotemporal voltage distributions, we then scaled the 

time-dependent voltage output by the spatial FEM voltage solution (Lempka et al., 2019a, 2019c; 

Lempka and Patil, 2018). Using custom made scripts, we applied these extracellular voltages onto 

the model axons with the extracellular mechanism in NEURON and used a bisection algorithm 

(error < 1%) to calculate the activation threshold for each axon. In our simulations, we applied a 

stimulus train consisting of pulses applied at a rate of 50 Hz, pulse width of 300 µs, and a passive 

discharge phase of 6 ms in duration. We included a total of three pulses in our simulations. To 

determine the pulse amplitude required to produce tonic firing for each axon, we defined the 

activation threshold as the lowest pulse amplitude required to generate action potentials for both 

of the final two pulses of our three-pulse stimulus train. For our sensory axon model, axons that 
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generate action potentials during the final two stimulus pulses will typically continue to generate 

action potentials at a one-to-one ratio with each stimulus pulse for pulse trains of longer durations. 

8.3.4. General modeling workflow of RADO-SCS 

Users can download all STL files of the detailed spinal tissues and prepositioned SCS lead, 

along with detailed documentation and version control, using the weblink provided above. 

Depending upon the user needs, users can either use all model files (i.e. segmented tissues) or 

exclude a selection from their model. Users can either customize the model by adding their own 

electrode/lead or reposition the included lead by using commercial or freely-available CAD 

software, such as Solidworks (Dassault Systemes Corp., MA, USA), Autodesk (Autodesk, Inc., 

CA, USA), FreeCAD (https://www.freecadweb.org), etc. The final model file can then be meshed 

using commercial software, such as Simpleware (Synopsys Inc., CA, USA), or other open-source 

packages, such as Gmsh (http://gmsh.info/), to generate a volumetric FEM mesh. The mesh can 

then be imported and solved using a commercial FEM solver, such as COMSOL Multiphysics 

(COMSOL Inc., MA, USA), or open-source packages, such as SimScale 

(https://www.simscale.com/). The users can then compute the extracellular voltage predicted by 

the FEM model and couple it with multi-compartment axon models (see [55] for details on how 

cable models of mammalian nerve fibers are developed) using NEURON (open-source), Python 

(open-source), or MATLAB (MathWorks, MA, USA) programming environments to estimate 

different fiber type activation thresholds. 

8.4. Results 

The RADO-SCS model included a total of 245 STL files (including tissues and leads). We 

further merged alike STL into a single mask using image processing that resulted in 19 tissue 
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masks (millimeter and sub-millimeter dimensions) and 4 lead masks (2 lead types with 2 masks 

for each contacts and insulating gap). The resulting volumetric mesh generated after multiple mesh 

refinements included >150 million tetrahedral elements requiring 13 hours of meshing time on the 

dedicated supercomputer cluster configured for finite element analysis. Numerically solving the 

RADO-SCS FEM required an additional 48 hours of computing time on the dedicated 

supercomputer cluster. We then applied the extracellular voltages calculated from the FEM to a 

population of 2039 model axons located within the DCs of the spinal cord. Developing the axonal 

models and interpolating the extracellular voltages took an additional four hours of computing 

time. The average computing time required to calculate the activation threshold for an individual 

axon model was typically under one hour, giving a total run time for all fibers of approximately 

1672 computational-hours, corresponding to 22 hours of real time in cluster computing.  
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Figure 46: Predicted voltage distribution and electric field from the FEM and fiber activation 

thresholds. (A1, A2, A3) Predicted peak electric field at 1 A stimulation was 12 kV/m (white matter) and 

4.2 kV/m (gray matter), respectively. (B) Illustration of the SCS lead used in the model and the stimulation 

configuration used in the exemplary model analysis. (C) Predicted peak voltage (1.2 kV) at the surface of 

the spinal cord. (D1, D2, D3, D4, D5) activation threshold for different fiber diameters.  For 5.7, 7.3, 8.7, 

10.0, and 11.5 µm fiber diameters, the maximum activation thresholds were 51.9, 21.3, 17.3, 12.7, and 9.9 

mA, respectively. 

We used an example situation of bipolar stimulation for an exemplary SCS lead positioned 

epidurally at the targeted lower vertebral spinal levels of the RADO-SCS model and we calculated 

the voltage and electric field distributions in different tissue compartments. Peak electric fields 
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predicted in the white matter and gray matter were 12 kV/m and 4.2 kV/m for 1A stimulation 

current, respectively. Peak voltage at the surface of the spinal cord was 1.2 kV (Fig. 46). The 

predicted electric field intensities were not uniform in the spinal tissues. 

The activation thresholds throughout the white matter are shown in Fig. 46. As expected, 

the largest diameter fibers (11.5 µm) had the lowest activation thresholds, and the most dorsal 

fibers were activated at thresholds below 1 mA. As the diameter of the fibers decreased, the 

activation thresholds increased. The smallest diameter fibers (5.7 µm) in the model had a minimum 

activation threshold of 3.23 mA. 

8.5. Discussion 

8.5.1. Application of state-of-the-art RADO-SCS model 

SCS volume conductor models are used for systematic optimization of the design and 

clinical implementation of SCS technologies, with ongoing efforts to enhance model precision and 

accuracy. Here, our goal was to develop an open-source high-resolution and anatomically-detailed 

SCS model and disseminate it to the scientific community. Currently, there is limited access to 

open-source platforms for SCS modeling, and available models have simple geometries and do 

not incorporate important tissue compartments. Thus, there is a need to develop and disseminate a 

high-resolution open-source SCS model. Using our modelling proficiencies, high-end computer 

resources, and an extensive literature search on anatomical details of spinal cord and peripheral 

tissues, we developed the first high-resolution open-source SCS model. This model is not only 

sophisticated in terms of details and architecture, but it also has good precision to predict 

meaningful current flow. All structural files are freely available to download under the Creative 

Commons Attribution-Noncommercial International License. In addition, any direct questions 
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regarding the downloadable files or modeling workflow can be directed to the online forum 

available in the model weblink. Questions will be addressed promptly by the corresponding 

authors via email. Any new updates will be periodically added to the source webpage and the 

model will be periodically checked for any issues. 

On one hand, if a user elects to exclude significant details in the RADO-SCS model (e.g. 

select to use only bone, fat, CSF, and spinal cord masks), the outcome is still a transparent and 

reproducible structural anatomical pipeline. Whereas on the other hand, the RADO-SCS with its 

complete complement of tissues provides the opportunity for SCS stimulations with state-of-the-

art precision, albeit requiring significant computational resources. The exemplary simulations that 

we conducted in this study are intended only to illustrate a successful workflow. It is an open 

question which model details (e.g. vasculature) will significantly impact simulation results, and 

the answer to this question will moreover depend on the application considered (e.g. electrode 

placement) and the hypothesized mechanisms of action. Nevertheless, such questions cannot be 

answered without comparing a precise SCS model with simplified counterparts. In this sense, the 

RADO-SCS model not only supports models with state-of-the-art precision, but analysis of which 

model details are While all modeling pipelines reference data from anatomical scans, “image 

(MRI) derived models” segment tissue overlaid on medical imaging scans from an individual 

(Lempka et al., 2019c; Zannou et al., 2019a). MRI-derived models have been increasingly adopted 

in situations where clinically available scans support individualized models (Fernandes et al., 

2018; Fiocchi et al., 2016; Parazzini et al., 2014). When models involve incorporation of 

anatomical details that are not captured within the images (e.g. submillimeter tissue features from 

imaging scans with only millimeter resolution), then such structures must be rendered by 

referencing a range of data across techniques and subjects, including cadaver studies. When a 
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majority of modeled tissues are thus rendered, the value of a strictly MRI-derived model (based 

on an individual scans) becomes unclear. An advantage of fully CAD-derived models is that each 

tissue is generated based on prescribed geometric features and thus supports reproducibility, 

systematic alteration, and ongoing refinement. 

8.5.2. Anatomical details of prior SCS models and a need for state-of-the-art open-source SCS 

model 

Finite element analysis has been widely implemented in 2D and 3D spinal cord current 

flow models. Although a multitude of computational SCS models of rodent and non-human 

primates has been developed and implemented for motor control following spinal cord injury 

(Capogrosso et al., 2018, 2013b; Greiner and Capogrosso, 2019), here we specifically focused on 

human SCS modelling studies (minimally invasive or non-invasive) for pain management. We 

categorized prior SCS models based on tissue compartments (considered vs. not 

considered/absent) and anatomical precision (limited, basic precision, moderate precision, and 

enhanced precision) (see Table 6 for details about these comparison terminologies). 
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Table 6: Comparison of the RADO SCS model with other existing SCS models based on model 

derivation (CAD vs. MRI), constructed tissue compartments (unclear, considered, and not 

considered/absent), and precision in anatomical details (limited, basic, moderate, and enhanced). 

Limited refers to SCS models with minimal anatomical precision in constructed tissue compartments. Basic 

precision SCS models have regular shapes (e.g., cylindrical, triangular, rectangular prisms, wedges, bricks, 

or cubes) as tissue compartments, no flexion in geometry, and uniform dimension across spine levels. 

Moderate precision SCS models include tissue compartments with minimal resolution or have regular 

geometric shapes with some flexion and uniform dimension across spine level. Enhanced precision refers 

to SCS models with tissue compartments with realistic geometry, additional anatomical details (flexion, 

bifurcation, union), high resolution, and spine level specific dimensions.  

In the early 1980’s, Coburn developed the first 2D FEM model representing non-

homogeneous human spinal cord tissues for invasive SCS. The model comprised of major spinal 

tissue domains, such as thoracic vertebrae, epidural fat, CSF, spinal roots, white matter, and gray 
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matter with limited precision (Coburn, 1980). In 1983, Sin and Coburn developed a simplified 

version of the original Coburn 2D SCS model, excluding spinal roots (limited precision) (Sin and 

Coburn, 1983). Coburn and colleagues in 1985, and Struijk and colleagues in 1991 and 1992 

developed 3D FEM models of SCS including major tissues of the spinal canal with basic precision 

and coarse meshing. In both models, dura was absent, with only Coburn’s model including a basic 

spinal root (Coburn, 1985; Coburn and Sin, 1985; Struijk et al., 1992, 1991). Struijk and colleagues 

in 1993a and 1993b, Holsheimer and colleagues in 1995 and 1997, and Wesselink and colleagues 

in 1998 and 1999 developed a 3D SCS model including the mid cervical (C4-C6), mid thoracic 

(T4-T7), and low thoracic (T10-T11) vertebral spine level with major spinal canal tissue 

compartments, including dura mater and surrounding tissue layers (thorax), all tissue 

compartments with basic precision (Holsheimer et al., 1995, p. 195; Holsheimer and Wesselink, 

1997; Struijk et al., 1993a, 1993b; Wesselink et al., 1999, 1998). These models simulated either 

dorsal root (DR) fibers and/or dorsal column (DC) fibers using multicompartment cable models. 

Wesselink et al. included white matter anisotropy and encapsulation layer between the electrode 

and dura (Holsheimer and Wesselink, 1997; Wesselink et al., 1998).  

In 2000, Rattay and colleagues developed a T11-L2 SCS model with basic precision in 

vertebrae, epidural space, dura, CSF, rootlets trajectory, and thorax, whereas the spinal cord 

(including gray matter and white matter) had moderate precision in anatomical details. They 

simulated DR fiber activation using a multicompartment cable model (F Rattay et al., 2000). In 

2002, Holsheimer used a simplified 3D SCS model that lacked a dura mater compartment (basic 

precision) to discuss which nerve fibers along the spinal cord were activated by SCS intensities 

within the therapeutic range (Holsheimer, 2002b). Manola and colleagues in 2005 and 2007 used 

a basic precision 3D SCS model that included vertebrae, epidural fat, dura, CSF, gray-matter, 
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white-matter, and general thorax in the FEM. They used cable models to simulate DR and DC 

fiber activation (Manola et al., 2007; Manola and Holsheimer, 2004). A more sophisticated CAD-

derived SCS model was developed in 2010 by Ladenbauer and colleagues and Danner and 

colleagues in 2011 for non-invasive and invasive SCS with a vertebral column of moderate 

precision (Danner et al., 2011; Ladenbauer et al., 2010). This model represented spinal tissue 

compartments at basic anatomical precision, with uniform dimensions across spine levels. The 

model also did not include a dura mater in the FEM. The dorsal and ventral root fiber activation 

were further analyzed using cable models (Ladenbauer et al., 2010). In 2011, Howard and 

colleagues developed a simplified 2D SCS model with no dura mater and limited precision in the 

modelled tissue compartments (Howard et al., 2011). Lee and colleagues in 2011 and Veizi and 

colleagues in 2017 developed a 3D FEM SCS model of a low thoracic and a sacral level spinal- 

Lempka et al, 2015 developed a 3D SCS model (lower thoracic spinal cord) of kilohertz frequency 

SCS with white matter and gray matter with enhanced precision and other tissue compartments 

with basic anatomical precision (Veizi et al., 2017). Arle and colleagues in 2014 and 2016 used an 

FEM derived from the Wesselink (Wesselink et al., 1999) and Holsheimer groups’ SCS model 

(Greiner and Capogrosso, 2019; Ladenbauer et al., 2010) (basic anatomical precision) (Danner et 

al., 2011; Fernandes et al., 2019). In their 2014 SCS model, vertebrae and spinal roots were missing 

(Danner et al., 2011). Fernandes et al., 2018 and 2019 utilized a MRI-derived human model based 

on the Virtual Population Family (Laird and Parker, 2013) comprising thirteen tissue 

compartments; namely skin, fat (including subcutaneous adipose tissue), muscle, bone, heart, 

lungs, viscera, vertebrae, IV disc, dura mater, CSF, brainstem, and spinal cord (gray matter and 

white matter). The model had enhanced anatomical precision on peripheral spinal tissues/thorax, 
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vertebrae, IV disc, CSF, dura mater, and spinal cord, but basic precision in the roots. It was unclear 

whether the epidural space (fat) was included in the model. 

Durá et al., 2019 developed a simplified 3D SCS model at the T10 spine level with basic 

anatomical precision in vertebrae, epidural fat, dura mater, CSF, while both white-matter and gray-

matter had moderate anatomical precision. DR fiber geometry included in the FEM had limited 

anatomical precision (Durá et al., 2019). In 2018, Kent and colleagues developed a 3D dorsal root 

ganglion (DRG) model with basic anatomical precision of the dorsal root and the DRG, and limited 

precision in epidural tissues and vertebrae (Kent et al., 2018). Wagner and colleagues in 2018 

constructed a moderate precision SCS model of L1-S2 spine level including epidural fat, CSF, 

gray-matter, white mater, spinal roots (dorsal and ventral), and rootlets. However, it was unclear 

whether vertebrae, discs, dura, and thorax were included in the model (Wagner et al., 2018). 

Lempka and colleagues in 2019 constructed a patient-specific FEM SCS model with spinal cord, 

CSF, epidural fat, and a simplified spine domain. All segmented tissue compartments had 

moderate anatomical precision. They also modeled DC and DR fibers using multicompartment 

cable models (Lempka et al., 2019c, 2019a). 

In 2019, Anderson and colleagues developed a simple 3D SCS model with basic 

anatomical precision of major spinal canal tissue compartments (white matter, gray matter, CSF, 

dura, and extradural tissue layer) (Anderson et al., 2019). A human L5 DRG model with basic 

anatomical precision was developed by Graham et al. in 2019 where they represented general 

thorax, bone, intraforaminal tissue, dural covering, and DRG using simplified shapes (Graham et 

al., 2019b). Bikson’s group in 2019 developed a simplified T8-T10 SCS model comprising 

vertebrae (moderate precision), IV disc (moderate precision), epidural space/fat (basic precision), 

meninges/dura mater (basic precision), CSF (basic precision), spinal cord (basic precision), spinal 
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roots (basic precision), rootlets (basic precision), thoracic aorta and sub-vasculature (basic 

precision), and soft tissues/thorax (basic precision) (N. Khadka et al., 2019; Zannou et al., 2019a, 

2019b). In the same year, Lempka’s group developed an updated 3D SCS model of the lower 

thoracic spine level consisting gray matter and white matter of the spinal cord (enhanced 

anatomical precision), dorsal rootlets (moderate precision), CSF (basic precision), dura mater 

(basic precision), epidural fat (basic precision), vertebrae (moderate precision), and discs 

(moderate precision) (Anaya et al., 2020). This model had additional details and precision in some 

tissue compartments compared to their 2015 SCS model, but  some major spinal tissue 

compartments were not included in the model, the dimensions of the tissue compartments were 

uniform across spinal levels, and the surrounding tissue/thorax had simplified geometry. 

Prior SCS studies clearly demonstrate that computational models represent a valuable tool 

to study the potential mechanisms of action of SCS and to optimize the design and implementation 

of SCS technologies. However, it is imperative that these computational models include the 

appropriate level of details to accurately predict the neural response to SCS and to correlate model 

predictions with clinical outcomes. Various simplifications to the model design may affect model-

based predictions of the neural response to SCS. Therefore, we believe that there is a need for an 

anatomically-detailed high-resolution spinal cord model that captures major spinal tissue 

compartments in order to support enhanced prediction of SCS current flow. Here, the RADO-SCS 

is a state-of-the-art open-source contribution.  
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Conclusions and Future Work 

A. Summary of Results 

 The purpose of this dissertation work was to answer three fundamental questions related to 

tDCS: 1) Does tDCS-induced skin reddening profile match model predicted current density 

profile? (Aim 1); 2) Is there any skin heating during tDCS and if skin heating is due to joule heat? 

(Aim 2); 3) Can a realistic skin model with complex multi-layers and ultrastructures explain the 

current flow pattern through the skin and their role in tDCS-induced skin reddening and skin 

heating? (Aim 3). In the Aim 1, we concluded that skin reddening profile is not a uniform and it 

does not match the local current density predicted by the model. In the Aim 2, we concluded that 

tDCS produced minimal skin heating, but the temperature was below exposed skin level (not 

injurious), and the multi-layer skin model predicted higher temperature increase due to joule heat 

compared to prior homogeneous skin model. In the Aim 3, we concluded that realistic skin tissue 

layers and ultrastructures fundamentally change current flow depending upon the parameters and 

the model with these details match experimental observations of reddening.  

B. General Considerations 

1. Alignment of model with experimental results 

i. Skin reddening (Erythema) 

In the Aim 1, the local current density predicted by the homogenous FEM model did not 

match the skin experimental reddening profile (main hypothesis was rejected). We then proposed 

an alternative hypothesis that experimental skin current density is indeed (relatively) uniform, and 

the homogenous model prediction is therefore incorrect. Prior simplistic (e.g. homogenous or two-
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layer) models lack relevant details of skin structures and thus did not align with the experimental 

findings such as skin reddening. In order to address this possibility, in the Aim 3, we modeled the 

skin with multi-layers (epidermis, dermis, and fat), with or without additional ultra-structures (hair 

follicles, sweat glands, and blood vessels).  

• The addition of multi-layers (considering a range of conductivity parameters) without ultra-

structures resulted in the prediction of higher current density around the electrode perimeter, 

both in the epidermis and dermis skin layers.  

• The addition of sweat glands only (hair follicles and blood vessels absent) into the multi-

layer skin model resulted in the predictions of peak current density around the sweat glands 

in both the epidermis and dermis layers. These current density hotspots were consistent 

(uniform) across the sweat glands, both near and far from the electrode edges. 

• Further addition of only blood vessels (hair follicles and sweat glands absent) into the multi-

layer skin model resulted in the prediction of higher current density around the electrode 

edges in the epidermis and upper dermis. However, at the lower dermis and fat, the current 

density was consistent (uniform) across blood vessels under the electrode, both near and far 

from the electrode edges. 

Therefore, there are two ultrastructure details that can be incorporated into the multi-layer 

skin model to produce prediction of current flow patterns that are consistent with the experimental 

observations of skin reddening. The first is an addition of sweat glands which removes current 

concentration at the electrode edges. The second is an addition of blood vessels which shows that 

current density across the modeled vasculature is uniform under the electrode. The Aim 3 considers 

a range of model details and parameters, and we cannot conclude at this time what the “ideal” 

model parameters should be. However, we know that multiple-skin layers and ultrastructures are 
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certainly present in the real skin and incorporating these details into the model fundamentally 

impacts the predictions - and that a model with these details match experimental observations of 

reddening.  

ii. Skin temperature 

• In the Aim 2, a post-hoc analysis on temperature measurement across the multiple 

sensors (perimeter sensors vs center sensors) indicated no significant difference in 

temperature change across the sensors (i.e. to the resolution of the measurement, the 

skin under the electrode perimeter did not heat more than the skin under the center of 

the electrode).These measurements were collected across different time points with no 

difference between center and perimeter at any time point. 

• In the Aim 2, the multi-layer skin model without ultra-structures predicted a moderate 

annulus of heating at the perimeter compared to the middle, near the start time of 

stimulation (0.35 oC difference between the perimeter and the middle for active 

stimulation at t =5 min), but not near the end time of stimulation (< 0.01 oC difference 

between the perimeter and the middle for active stimulation at t = 20 min) (Fig. 7D2). 

However, the difference in between the center and perimeter were also observed in the 

non-stimulation case suggesting that they reflect the application of the sponge pad. The 

model thus matches experimental distribution near the end of stimulation (~t = 20 min) 

but not near the start time of stimulation (~t =5 min).  

• Since adding sweat glands and blood vessels into the multi-layer skin model eliminated 

or reduced current concentration at the edges, we expect that a bioheat model of such a 

detailed skin would increase the uniformity of temperature predicted at the surface of 

skin across the early and late times of stimulation - consistent with the experimental 
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measurement of skin temperature across all the time points. However, the temperature 

non-uniformity predicted simply as a result of the sponge pad presence (which was not 

observed experimentally) would still be present.  

• In addition, the multi-layer skin model predicted 0.38 oC temperature increase due to 

joule heat (the difference between peak temperature in the active case compared to no-

stimulation at t=20 min) which is less than the experimental measurement of ~1.3 oC. 

Possibly, the addition of model ultrastructures (e.g. sweat glands, blood vessels) may 

increase joule heat by producing local hot-spots of current. Additionally, we did not 

model stimulation-induced blood flow, which would further increase skin temperature 

in the active case (since core temperature is above the skin temperature). Indeed, the 

observation of redness under the electrode (Aim 1) directly points to the contribution 

from increased blood flow.  We believe that stimulation induced blood flow (which is 

apparently uniform under the electrode, see above) is the most likely missing factor to 

reconcile the modeled and experimental measures of temperature rise (both peak and 

spatial profile). 

Additional opportunities to relate the model predictions with experimental results are noted below. 

2. Role of joule heat in skin heating 

The phantom is a homogeneous volume which mimics how skin is typically modeled. It is 

not feasible to build a skin phantom that reproduces skin multi-layers (note the thickness of 

epidermis (0.1 mm) and ultra-structures. The phantom conductivity (0.465 S/m) was selected to 

match the average skin conductivity across the layers, and this value was used in prior simplistic 

bio-heat model (Datta et al., 2009). We also applied a thin layer of electrolyte paste to facilitate 

the electrode phantom contact, which was not modeled. The phantom indicated negligible 
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temperature increase (0.1 oC at t=20 min) due to the joule heat. The modeling of the phantom 

served to verify the simple model assumptions. 

• As noted, prior homogeneous skin models predict negligible temperature and may not 

reflect accurate skin heating, including due to the joule heat. Therefore, there is a need 

for a detailed skin model that reliably predicts temperature increase due to the joule heat. 

• We developed a multi-layer skin model (epidermis, dermis, and fat) incorporating blood 

perfusion and metabolism. The perfusion and metabolism in this model were selected 

based on literature, however they do not influence skin heating in response to 

stimulation as simulated (since they are not responsive to current). Compared to the 

phantom model, the multi-layer skin model predicted higher temperature increase. This 

increase was a result of joule heating through higher resistivities (electrical and thermal) 

of the skin tissue layers. This increase was closer to, but still less than the experimental 

measures, with the remaining difference attributable to other factors missing in the 

model (see above). 

3. Higher current and temperature increase 

• More current flow will inevitably produce more joule heating. Temperature increase at 

higher current (> 2 mA) is not explored in the main dissertation Aims. However, our 

pilot skin temperature measurement using 4 mA suggested that temperature can increase 

up to 2 oC, and this increase is still below exposed skin level (sponge cooling 

temperature was ~ 2.3 oC).  Therefore, we expect that even at moderately higher current, 

temperature at the surface of the skin will not reach injurious levels and possibly not 

reach directly perceptible levels (compared to the exposed skin temperature). 
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• The model can be used to predict temperature rise under any current intensity. However, 

such a model would need to be appropriately parameterized. As discussed above and 

below, we feel that the current model iteration does not fully capture experimental 

observations, but we do suggest specific improvements in the model that may reconcile 

model predictions with the existing experiments for 2 mA.We expect the use of high 

current is then ultimately limited by pain and heat-sensitive nerve activation (rather than 

actual heating). In theory, an advanced and accurate skin model can help design 

electrodes and waveforms that limit these cutaneous sensations. 

4. Inflammatory response during tDCS 

• Guarienti et al., 2015 used ketoprofen 2% (a nonsteroidal anti-inflammatory agent) to 

effectively minimize tDCS-induced erythema for blinding improvement.  Ketoprofen did 

not impact self-reported adverse events such as tingling or burning sensation.  In the same 

study, application of lidocaine (an anesthetic agent) did not reduce erythema, but also 

(surprisingly) did not significantly impact self-reported adverse events. Guarienti et al. 

assessed only the frequency (e.g. likelihood) of adverse events, not their intensity.  

• There is a limited data on the role of inflammatory response during tDCS. Data from 

Guarienti et al.  is consistent with the skin redness increasing in active tDCS condition 

(Aim 1) and also with an associated activation of blood flow (see above) that is suppressed 

by an anti-inflammatory agent. 

5. Temporal response of temperature 

• In the period after DC stimulation was turned off (post-stimulation, Fig. 7D1), there was 

no experimental evidence of further skin temperature increase. Temperature also did not 
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recover to baseline in the 5 minutes after stimulation, which can be explained by the heat 

capacity of the skin.  

• In the phantom, there was no statistically significant effect of time in temperature increase 

for any condition (anode, cathode, or control). There was also no evidence of further 

stimulation-induced phantom temperature increases after stimulation (post-stimulation, 

Fig. 7C1). 

6. Use of forearm vs forehead for stimulation 

We believe that the forearm is a reasonable approximation of the forehead. The forearm 

has been previously used in tDCS electrode development and tolerability testing, and is considered 

reliable to predict the same effects on the head (Minhas et al., 2011). Moreover, we have also 

conducted preliminary temperature measurement at the forehead in the Appendix 2, and observed 

similar temperature increase as in the forearm stimulation. 

7. Values for blood perfusion 

In the Aim 2, the blood perfusion values for skin model were selected based on the 

established literature values. However, a sensitivity analysis of perfusion values on any skin 

temperature increase was not conducted in this Aim because the values of perfusion (and 

metabolism) did not impact the predicted change in the temperature during tDCS (as we did not 

model vascular flare response, and blood perfusion would not impact joule heat; see above).  

8. Hairline and skin reddening 

We used M1-SO montage to apply tDCS (anode positioned over the right forehead) and 

analyzed skin reddening only under the anode. In theory, skin reddening patterns in the hairline 

may not be consistent with the reddening in the hairless skin because the hair follicles influence 
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current flow pattern (Aim 3). However, both hairless skin and skin with hair have other skin 

ultrastructures, notably blood vessels and sweat glands. In the Aim 3, we predict the presence of 

blood vessels and sweat glands fundamentally impacts current flow patterns (distribution and hot 

spots). We did not directly compare the skin model with blood vessels, sweat glands, and hair 

follicles against the skin model with blood vessels, sweat glands, but no hair follicles. If the 

difference between these two models are not significant, it would suggest that the skin effects are 

not different at or below the hairline. We are not aware of any consistent experimental reports of 

the difference in adverse events between above vs below hairline electrode placements. A lack of 

experimental difference between above vs below hairline electrode placements would be 

consistent with a model showing minimal impact of hair follicles. 

9.  Direct comparison of measured temperature and predicted temperature  

 
Figure 47: Comparison between experimental temperature increase and predicted temperature 

increase during 2 mA tDCS at four different location under the sponge pad for four different 

time points. The sampling locations are color coded and are sampled from edge-to-edge diagonally. In 

the case of the experiment, they represent locations for the four thermocouple sensors. Experimental 
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data shows temperature measurement for ten subjects (mean ± SEM). Across the sampling locations, 

the temperature change is higher in the experiment than the model. Predicted temperature (FEM) is 

using a multi-layer skin model without ultrastructures. ΔT is relative to control (no-stimulation). 

 

A post-hoc multiple comparison following Kruskal-Wallis test on the temperature 

measurement across different locations at each time point (t =5 min, 10 min, 15 min, and 20 

min) indicated that there was no significant difference in temperature change ( P > 0.01) across 

the locations (i.e. to the resolution of the measurement, the skin under the electrode perimeter 

did not heat more than the skin under the center of the electrode). 

 

The multi-layer skin model without ultra-structures predicted a non-uniform temperature 

change across different locations for t =5 min, 10 min, and 15 min. However, near the end time 

of stimulation (t= 20 min), there was less than 0.01 OC temperature change across different 

locations, suggesting that model match experimental distribution of temperature near the end 

of stimulation (t= 20 min) but not near the start time of stimulation (~ t= 5  min). 

 

The multi-layer skin model predicted ~ 0.38 OC temperature increase due to joule heat (the 

difference between peak temperature in the active case compared to no-stimulation (t=20 min) 

which is less than the experimental measurement of ~1.3 OC (t=20 min)). 

 

Since adding sweat glands and blood vessels into the multi-layer skin model eliminated or 

reduced current concentration at the edges, we expect that a bioheat model of such a detailed 

skin would increase uniformity of temperature predicted at the surface of skin across the early 

and late times of stimulation - consistent with the experimental measurement of skin across all 

time points.  
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C. Future Direction  

To this end, we developed few novel hypothesis, principles, and technology which can be 

successfully leveraged to future device design. Current density measurement under the electrode 

will help to relate the current density profile of the experiment and the model. Also, skin reddening 

spatial profile can be related with the current density profile. Experimental measurement of the 

current density will validate the accuracy of the realistic skin model. The temperature simulation 

in the Aim 2 can be further studied using the high-resolution skin model from the Aim 3. The 

multi-layer skin model from the Aim 2 does not have skin-ultrastructure and it predicted 0.38 OC 

temperature increase due to joule heat, which is less than the experimental measurement. However, 

adding sweat glands and blood vessels into the multi-layer skin model may significantly increase 

joule heat, increasing alignment of the model prediction with the experiment. Also, adding sweat 

glands and blood vessels into the multi-layer skin model (Aim 3) reduced current concentration at 

the edges, we expect a bioheat model of this detailed skin would predict a uniform temperature at 

the surface of skin- consistent with the experiment. 

Furthermore, the method/technology developed in the Appendix 1 can be implemented into 

multi-channel electrical stimulation to monitor individual electrode impedance during tDCS. 

Within electrode current steering (WECS) technology principle proposed in the Appendix 4 can 

be used to design a novel electrode for tDCS which also uses technology designed in the Appendix 

1. The performance of this novel electrode needs to be tested. High-resolution analytically realistic 

and detailed skin model developed in the Aim 3 is not only itself a novel model, but it is also a 

power tool which can be explicitly used for electrode design and rapid prototype testing. Although 

we have not modelled the blood vessels correctly in this skin model, adding blood vessel wall and 

lumen will make this model the state-of-the-art tool. From this model, we understood the role of 
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blood vessels in current dispersion to deeper tissues. This idea can be applied in transcranial current 

flow modeling (adding vasculature in the model) to understand the neurovascular 

neuromodulation. In the Aim 2, we used intermediate skin model to simulate bio-heat with 

perfusion and metabolism. Using the advanced skin model from the Aim 3 will help to understand 

the role of vasculature in skin temperature increase as well. In the Appendix 2, we tested the 

performance of novel dry electrode for tDCS, the role of electrode material (used in dry electrode) 

in cutaneous current flow can be assessed using the skin model from the Aim 3. In the Appendix 

3, we developed a novel adaptive controller for administering tDCS up to 4 mA. This controller 

can be further optimized using machine learning to update the adaptive current by incorporating 

system impedance (skin impedance, electrode impedance) and data from biomarkers (EEG). In the 

Appendix 5, we proposed a novel tissue-heating related neuromodulation hypothesis for kHz 

frequency spinal cord stimulation. This hypothesis needs to be tested via in vitro experiments and 

in vivo measurements in human/animal study. In the Appendix 7, we modeled brain tissue 

temperature increases during kHz-frequency Deep Brain Stimulation to support the hypothesis 

presented in Appendix 5 regarding kHz frequency stimulation. This hypothesis also needs to be 

tested empirically. Finally, in the Appendix 8, we developed the first realistic open-source spinal 

cord model (RADO-SCS) for SCS, DRG, or transspinal electrical stimulation. This model is CAD 

derived and which can be replaced the CAD files with realistic MRI derived vertebrae, IV discs, 

and vasculature in future version control of this model. 
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